使用Maven搭建Hadoop2開發環境
阿新 • • 發佈:2019-02-06
關於Maven的使用會在另外分享中說明,這裡僅介紹怎麼搭建Hadoop的開發環境。
1. 首先建立工程
mvn archetype:generate -DgroupId=my.hadoopstudy -DartifactId=hadoopstudy -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false
2. 然後在pom.xml檔案裡新增hadoop的依賴包hadoop-common, hadoop-client, hadoop-hdfs,新增後的pom.xml檔案如下
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://maven.apache.org/POM/4.0.0" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>my.hadoopstudy</groupId> <artifactId>hadoopstudy</artifactId> <packaging>jar</packaging> <version>1.0-SNAPSHOT</version> <name>hadoopstudy</name> <url>http://maven.apache.org</url> <dependencies> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>2.5.1</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-hdfs</artifactId> <version>2.5.1</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.5.1</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> </dependencies> </project>
3. 測試
3.1 首先我們可以測試一下hdfs的開發,這裡假定使用本博上一篇Hadoop文章中的hadoop偽分散式,類程式碼如下
package my.hadoopstudy.dfs; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import java.io.InputStream; import java.net.URI; public class Test { public static void main(String[] args) throws Exception { String uri = "hdfs://192.168.1.140:9000/"; Configuration config = new Configuration(); FileSystem fs = FileSystem.get(URI.create(uri), config); // 列出hdfs上/根目錄下的所有檔案和目錄 FileStatus[] statuses = fs.listStatus(new Path("/")); for (FileStatus status : statuses) { System.out.println(status); } // 在hdfs的/user根目錄下建立一個檔案,並寫入一行文字 FSDataOutputStream os = fs.create(new Path("/user/fkong/test.log")); os.write("Hello World!".getBytes()); os.flush(); os.close(); // 顯示在hdfs的/user/fkong下指定檔案的內容 InputStream is = fs.open(new Path("/user/test.log")); IOUtils.copyBytes(is, System.out, 1024, true); } }
3.2 測試MapReduce作業
測試程式碼比較簡單,如下:
package my.hadoopstudy.mapreduce; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import java.io.IOException; public class EventCount { public static class MyMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text event = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { int idx = value.toString().indexOf(" "); if (idx > 0) { String e = value.toString().substring(0, idx); event.set(e); context.write(event, one); } } } public static class MyReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length < 2) { System.err.println("Usage: EventCount <in> <out>"); System.exit(2); } Job job = Job.getInstance(conf, "event count"); job.setJarByClass(EventCount.class); job.setMapperClass(MyMapper.class); job.setCombinerClass(MyReducer.class); job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
執行“mvn package”命令產生jar包hadoopstudy-1.0-SNAPSHOT.jar,並將jar檔案複製到hadoop安裝目錄下
這裡假定我們需要分析幾個日誌檔案中的Event資訊來統計各種Event個數,所以建立一下目錄和檔案
/tmp/input/event.log.1
/tmp/input/event.log.2
/tmp/input/event.log.3
因為這裡只是要做一個列子,所以每個檔案內容可以都一樣,假如內容如下
JOB_NEW ...
JOB_NEW ...
JOB_FINISH ...
JOB_NEW ...
JOB_FINISH ...
然後把這些檔案複製到HDFS上
$ bin/hdfs dfs -put /tmp/input /user/fkong/input
執行mapreduce作業
$ bin/hadoop jar hadoopstudy-1.0-SNAPSHOT.jar my.hadoopstudy.mapreduce.EventCount /user/input /user/output
檢視執行結果
$ bin/hdfs dfs -cat /user/output/part-r-00000