【opencv+C++】在影象中找四邊形
阿新 • • 發佈:2019-02-08
/* 這個程式的基本思想是:對輸入的影象進行濾波去掉噪音,然後進行canny邊緣檢測,之後進行膨脹,然後尋找輪廓,對輪廓進行多邊形的逼近,檢測多邊形的點數是否是4而且各個角的的餘弦是否是小於某個值,程式中認為是0.3,然後就判斷該多邊形是四邊形,之後根據這四個點畫出該影象。 ps:我對程式中餘弦定理的使用 感覺公式用錯了 */ #include "stdafx.h" #include "cv.h" #include "highgui.h" #include <stdio.h> #include <math.h> #include <string.h> int thresh = 50; IplImage* img = 0; IplImage* img0 = 0; CvMemStorage* storage = 0; CvPoint pt[4]; const char* wndname = "Square Detection Demo"; // helper function: // finds a cosine of angle between vectors // from pt0->pt1 and from pt0->pt2 double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 ) { double dx1 = pt1->x - pt0->x; double dy1 = pt1->y - pt0->y; double dx2 = pt2->x - pt0->x; double dy2 = pt2->y - pt0->y; //1e-10就是“aeb”的形式,表示a乘以10的b次方。 //其中b必須是整數,a可以是小數。 //?餘弦定理CosB=(a^2+c^2-b^2)/2ac??所以這裡的計算似乎有問題 return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10); } // returns sequence of squares detected on the image. // the sequence is stored in the specified memory storage CvSeq* findSquares4( IplImage* img, CvMemStorage* storage ) { CvSeq* contours; int i, c, l, N = 11; CvSize sz = cvSize( img->width & -2, img->height & -2 ); IplImage* timg = cvCloneImage( img ); // make a copy of input image IplImage* gray = cvCreateImage( sz, 8, 1 ); IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 ); IplImage* tgray; CvSeq* result; double s, t; // create empty sequence that will contain points - // 4 points per square (the square's vertices) CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage ); // select the maximum ROI in the image // with the width and height divisible by 2 cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height )); // down-scale and upscale the image to filter out the noise //使用gaussian金字塔分解對輸入影象向下取樣,首先對它輸入的影象用指定濾波器 //進行卷積,然後通過拒絕偶數的行與列來下采樣 cvPyrDown( timg, pyr, 7 ); //函式 cvPyrUp 使用Gaussian 金字塔分解對輸入影象向上取樣。首先通過在影象中插入 0 偶數行和偶數列,然後對得到的影象用指定的濾波器進行高斯卷積,其中濾波器乘以4做插值。所以輸出影象是輸入影象的 4 倍大小。 cvPyrUp( pyr, timg, 7 ); tgray = cvCreateImage( sz, 8, 1 ); // find squares in every color plane of the image for( c = 0; c < 3; c++ ) { // extract the c-th color plane //函式 cvSetImageCOI 基於給定的值設定感興趣的通道。值 0 意味著所有的通道都被選定, 1 意味著第一個通道被選定等等。 cvSetImageCOI( timg, c+1 ); cvCopy( timg, tgray, 0 ); // try several threshold levels for( l = 0; l < N; l++ ) { // hack: use Canny instead of zero threshold level. // Canny helps to catch squares with gradient shading if( l == 0 ) { // apply Canny. Take the upper threshold from slider // and set the lower to 0 (which forces edges merging) cvCanny( tgray, gray,60, 180, 3 ); // dilate canny output to remove potential // holes between edge segments //使用任意結構元素膨脹影象 cvDilate( gray, gray, 0, 1 ); } else { // apply threshold if l!=0: // tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0 //cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY ); cvThreshold( tgray, gray, 50, 255, CV_THRESH_BINARY ); } // find contours and store them all as a list cvFindContours( gray, storage, &contours, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) ); // test each contour while( contours ) { // approximate contour with accuracy proportional // to the contour perimeter //用指定精度逼近多邊形曲線 result = cvApproxPoly( contours, sizeof(CvContour), storage, CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 ); // square contours should have 4 vertices after approximation // relatively large area (to filter out noisy contours) // and be convex. // Note: absolute value of an area is used because // area may be positive or negative - in accordance with the // contour orientation //cvContourArea 計算整個輪廓或部分輪廓的面積 //cvCheckContourConvexity測試輪廓的凸性 if( result->total == 4 && fabs(cvContourArea(result,CV_WHOLE_SEQ)) > 1000 && cvCheckContourConvexity(result) ) { s = 0; for( i = 0; i < 5; i++ ) { // find minimum angle between joint // edges (maximum of cosine) if( i >= 2 ) { t = fabs(angle( (CvPoint*)cvGetSeqElem( result, i ), (CvPoint*)cvGetSeqElem( result, i-2 ), (CvPoint*)cvGetSeqElem( result, i-1 ))); s = s > t ? s : t; } } // if cosines of all angles are small // (all angles are ~90 degree) then write quandrange // vertices to resultant sequence if( s < 0.3 ) for( i = 0; i < 4; i++ ) cvSeqPush( squares, (CvPoint*)cvGetSeqElem( result, i )); } // take the next contour contours = contours->h_next; } } } // release all the temporary images cvReleaseImage( &gray ); cvReleaseImage( &pyr ); cvReleaseImage( &tgray ); cvReleaseImage( &timg ); return squares; } // the function draws all the squares in the image void drawSquares( IplImage* img, CvSeq* squares ) { CvSeqReader reader; IplImage* cpy = cvCloneImage( img ); int i; // initialize reader of the sequence cvStartReadSeq( squares, &reader, 0 ); // read 4 sequence elements at a time (all vertices of a square) for( i = 0; i < squares->total; i += 4 ) { CvPoint* rect = pt; int count = 4; // read 4 vertices memcpy( pt, reader.ptr, squares->elem_size ); CV_NEXT_SEQ_ELEM( squares->elem_size, reader ); memcpy( pt + 1, reader.ptr, squares->elem_size ); CV_NEXT_SEQ_ELEM( squares->elem_size, reader ); memcpy( pt + 2, reader.ptr, squares->elem_size ); CV_NEXT_SEQ_ELEM( squares->elem_size, reader ); memcpy( pt + 3, reader.ptr, squares->elem_size ); CV_NEXT_SEQ_ELEM( squares->elem_size, reader ); // draw the square as a closed polyline cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 ); } // show the resultant image cvShowImage( wndname, cpy ); cvReleaseImage( &cpy ); } void on_trackbar( int a ) { if( img ) drawSquares( img, findSquares4( img, storage ) ); } char* names[] = { "E:\\1.jpg", "E:\\2.jpg", "E:\\3.jpg", "E:\\4.jpg", "E:\\5.jpg", 0 }; int main(int argc, char** argv) { int i, c; // create memory storage that will contain all the dynamic data storage = cvCreateMemStorage(0); for( i = 0; names[i] != 0; i++ ) { // load i-th image img0 = cvLoadImage( names[i], 1 ); if( !img0 ) { printf("Couldn't load %s\n", names[i] ); continue; } img = cvCloneImage( img0 ); // create window and a trackbar (slider) with parent "image" and set callback // (the slider regulates upper threshold, passed to Canny edge detector) cvNamedWindow( wndname,0 ); cvCreateTrackbar( "canny thresh", wndname, &thresh, 1000, on_trackbar ); // force the image processing on_trackbar(0); // wait for key. // Also the function cvWaitKey takes care of event processing c = cvWaitKey(0); // release both images cvReleaseImage( &img ); cvReleaseImage( &img0 ); // clear memory storage - reset free space position cvClearMemStorage( storage ); if( c == 27 ) break; } cvDestroyWindow( wndname ); return 0; }