Codeforces 689E Mike and Geometry Problem(組合數學)
阿新 • • 發佈:2019-02-09
題意:
給你n個x軸上的線段,在其中選k個線段,對於所有的可能方案,總共有多少點次被覆蓋,也就是說同一個點如果被不同的方案所覆蓋還是要被算在答案裡的。
這個題首先我們要把線段的端點離散化,用map就可以,對於某一段,我們可以算出被多少條線段覆蓋,假設這個值為p,如果這一段被大於等於k個線段覆蓋,那麼ans+=Ckp∗num ,num是這一段點的個數。然後組合數要用階乘來算,再加上歐幾里得快速冪求逆元(神奇的方法),這題就結束了。
程式碼:
//
// Created by CQU_CST_WuErli
// Copyright (c) 2016 CQU_CST_WuErli. All rights reserved.
//
//#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <string>
#include <vector>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <algorithm>
#include <sstream>
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define SI(a) scanf("%d", &a)
#define SII(a,b) scanf("%d%d", &a, &b)
#define SIII(a,b,c) scanf("%d%d%d", &a, &b, &c)
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7f7f7f7f;
const int MOD=1e9+7;
const double eps=1e-10;
const double pi=acos(-1);
typedef long long ll;
using namespace std;
const int N = 200010;
ll n, k;
ll fac[N], inv[N];
ll ksm(ll a, ll x, ll mod) {
if (x == 0) return 1;
ll ret = ksm(a, x / 2, mod);
ret = ret * ret % mod;
if (x & 1) ret = ret * a % mod;
return ret;
}
void init() {
fac[0] = 1; inv[0] = 1;
for (ll i = 1; i < N; i++) {
fac[i] = fac[i - 1] * i % MOD;
inv[i] = ksm(fac[i], MOD - 2, MOD);
}
}
map<int, int> mp;
ll C(ll n, ll k) {
ll ret = fac[n] * inv[k] % MOD;
// lookln(fac[n]); lookln(inv[k]);
ret = ret * inv[n - k] % MOD;
return ret;
}
int main(int argc, char const *argv[]) {
#ifdef LOCAL
freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
// freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
init();
while (cin >> n >> k) {
mp.clear();
for (int i = 1; i <= n; i++) {
int l, r; SII(l, r);
mp[l]++; mp[r + 1]--;
}
int last = mp.begin()->first;
int tmp = 0;
ll ans = 0;
for (auto it = mp.begin(); it != mp.end(); it++) {
ll num = it->first - last;
if (tmp >= k) ans += C(tmp, k) * num % MOD;
// lookln(ans);
ans %= MOD;
tmp += it->second;
last = it->first;
}
cout << ans << endl;
}
return 0;
}
/*
_ooOoo_
o8888888o
88" . "88
(| -_- |)
O\ = /O
____/`---'\____
.' \| |// `.
/ \||| : |||// \
/ _||||| -:- |||||- \
| | \\ - /// | |
| \_| ''\---/'' | |
\ .-\__ `-` ___/-. /
___`. .' /--.--\ `. . __
."" '< `.___\_<|>_/___.' >'"".
| | : `- \`.;`\ _ /`;.`/ - ` : | |
\ \ `-. \_ __\ /__ _/ .-` / /
======`-.____`-.___\_____/___.-`____.-'======
`=---='
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
佛祖保佑 永無BUG
*/