[LeetCode] Target Sum通過新增+/-獲得目標結果
阿新 • • 發佈:2019-02-09
宣告:原題目轉載自LeetCode,解答部分為原創
Problem :
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols +
and -
.
For each integer, you should choose one from +
and -
as
its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3. Output: 5 Explanation: -1+1+1+1+1 = 3 +1-1+1+1+1 = 3 +1+1-1+1+1 = 3 +1+1+1-1+1 = 3 +1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
思路:動態規劃型別。通過給陣列的每個數值新增+/-符號,可以將陣列分為兩個部分,分別是正陣列pos[ ]和負陣列neg[ ],目標結果為:
target = sum_of_pos - sum_of_neg
target =
sum_of_pos - (sum_of_array - sum_of_pos)
target = 2 * sum_of_pos - sum_of_array
通過以上推導,我們可以將題意轉化成我們比較熟悉的型別,即求解和為某定值的子集的個數。在本題中,對應的目標和指的是sum_of_pos。
求解和為某定值的子集的個數,詳見另一篇文章“[LeetCode] Partition Equal Subset Sum劃分陣列形成兩個和相等的子集”。
程式碼如下:
#include<iostream>
#include<vector>
using namespace std;
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int s) {
int sum = 0;
for(int i = 0 ; i < nums.size() ; i ++)
{
sum += nums[i];
}
if(sum < s)
return 0;
else if((sum + s) % 2 != 0)
return 0;
else
return count(nums, (sum + s) / 2);
}
int count(vector<int>& nums, int target) {
if(nums.size() == 0)
return 0;
vector<int> count_of_sum(target + 1, 0);
count_of_sum[0] = 1;
for(int i = 0 ; i < nums.size() ; i++)
{
int add = nums[i];
for(int j = target; j >= add; j --)
{
count_of_sum[j] += count_of_sum[j - add];
}
}
return count_of_sum[target];
}
};
int main()
{
Solution text;
vector<int> nums(8,1);
cout << text.findTargetSumWays(nums, 4) << endl;
return 0;
}