全排列,字典順序問題 ( permutations/leetcode)
阿新 • • 發佈:2019-02-10
46. Permutations
注意是distinct numbers,所以相對簡單, 當然寫出好的程式碼也是困難的,下面是ac程式碼(效率可能不高)
方法1:採用dfs遍歷
class Solution {
private:
vector<vector<int>> ans;
vector<int> rs;
map<int,int> vis;
public:
void dfs(int len, vector<int> nums, int n)
{
if (len == n){
ans.push_back(rs);
return ;
}
for (int i = 0; i < n; i++)
{
if (vis[i] == 0){
vis[i] = 1;
rs.push_back(nums[i]);
dfs(len + 1, nums, n); // dfs
rs.pop_back();
vis[i] = 0;
}
}
}
vector <vector<int>> permute(vector<int>& nums) {
int n = nums.size();
if (n == 0)
return ans;
dfs(0, nums, n);
return ans;
}
};
方法2: 全排列思路,就是以某個數開頭,剩下的全排列,遞迴來做
class Solution {
private:
vector<vector<int>> ans;
public :
void recursion(int k,vector<int> nums, int n)
{
if (k >= n)
return;
if (k == n - 1){
/* for (int i = 0; i < n; i++)
cout << nums[i] << " ";
cout << endl;*/
ans.push_back(nums);
}
for (int i = k; i < n; i++)
{
swap(nums[k], nums[i]);
recursion(k + 1, nums, n);
swap(nums[k], nums[i]);
}
}
vector<vector<int>> permute(vector<int>& nums) { // nums是distinct
int n = nums.size();
if (n == 0)
return ans;
recursion(0, nums, n);
return ans;
}
};
47. Permutations II
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
For example,
[1,1,2] have the following unique permutations:
[
[1,1,2],
[1,2,1],
[2,1,1]
]
有重複數字,採用遞迴做法,顯然有很多重複的swap操作,需要避免
ac程式碼:
class Solution {
private:
vector<vector<int>> ans;
public:
void recursion(int k, vector<int> nums, int n)
{
if (k >= n)
return;
if (k == n - 1){
ans.push_back(nums);
}
sort(nums.begin() + k, nums.end()); // k之後的元素需要排序
// 兩相同元素 , 一個元素與兩個相同的元素?
for (int i = k; i < n; i++)
{
if (i != k && nums[i] == nums[i-1])
continue;
swap(nums[k], nums[i]);
recursion(k + 1, nums, n); // 遞迴
swap(nums[k], nums[i]);
}
}
vector<vector<int>> permuteUnique(vector<int>& nums) {
int n = nums.size();
if (n == 0)
return ans;
recursion(0, nums, n);
return ans;
}
};
31. Next Permutation
求下一個字典序
ac程式碼:
class Solution {
public:
void rev(vector<int> &nums, int left, int right){
for (int i = left; i <= (left + right) / 2; i++){
int tmp = nums[i];
nums[i] = nums[right - i + left];
nums[right - i + left] = tmp;
}
}
void nextPermutation(vector<int>& nums) {
int n = nums.size();
if (n <= 1)
return;
int pos = n - 2;
while (pos >= 0 && nums[pos] >= nums[pos + 1]){ // 遞增,等號問題
pos--;
}
if (pos >= 0){
// 找到pos後面 比 nums[pos] 大的最小的一個數
int j = n - 1;
while (nums[j] <= nums[pos]){
j--;
}
// swap
int tmp = nums[j];
nums[j] = nums[pos];
nums[pos] = tmp;
// reverse pos之後的所有數
rev(nums, pos + 1, n - 1);
}
else{
rev(nums, 0, n - 1);
}
}
};