Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization(第二週作業)
阿新 • • 發佈:2019-02-11
1 - Non-regularized model
You will use the following neural network (already implemented for you below). This model can be used:
- in regularization mode -- by setting the
lambd
input to a non-zero value. We use "lambd
" instead of "lambda
" because "lambda
" is a reserved keyword in Python. - in dropout mode
keep_prob
to a value less than one
You will first try the model without any regularization. Then, you will implement:
- L2 regularization -- functions: "
compute_cost_with_regularization()
" and "backward_propagation_with_regularization()
" - Dropout -- functions: "
forward_propagation_with_dropout()
backward_propagation_with_dropout()
"
In each part, you will run this model with the correct inputs so that it calls the functions you've implemented. Take a look at the code below to familiarize yourself with the model.