使用python中的Matplotlib繪圖示例(續)
阿新 • • 發佈:2019-02-11
下面給出一些比較高階的例子:
注意:
程式碼中需要儲存執行結果圖, 需要事先在當前原始碼目錄下建立一個figure資料夾來存放圖片.
一.數學圖形
#!/usr/bin/env python #encoding: utf-8 #numpy is accessible via 'np' alias from pylab import * figure(figsize=(8,5), dpi=80) subplot(111) X = np.linspace(-np.pi, np.pi, 256, endpoint=True) C,S = np.cos(X), np.sin(X) plot(X, C, color="blue", linewidth=2.5, linestyle='-', label='cosine') plot(X, S, color="red", linewidth=2.5, linestyle='-', label='sine') ax = gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data', 0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) xlim(X.min()*1.1, X.max()*1.1) xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$']) ylim(C.min()*1.1, C.max()*1.1) yticks([-1, 0, +1], [r'$-1$', r'$0$', r'$+1$']) t = 2*np.pi/3 plot([t,t], [0,np.cos(t)], color='blue', linewidth=1.5, linestyle='--') scatter([t,], [np.cos(t),], 50, color='blue') annotate(r'$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$', xy=(t, np.sin(t)), xycoords='data', xytext=(+10, +30), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle='arc3, rad=.2')) plot([t,t], [0,np.sin(t)], color='red', linewidth=1.5, linestyle='--') scatter([t,], [np.sin(t),], 50, color='red') annotate(r'$\cos(\frac{2\pi}{3})=\frac{1}{2}$', xy=(t, np.cos(t)), xycoords='data', xytext=(-90, -50), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle='arc3, rad=.2')) legend(loc='upper left'); for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(16) label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65)) #must create dir in advance savefig("figure/exercise_10.png", dpi=72) show()
二.散點圖(scatter plots)
#!/usr/bin/env python #encoding: utf-8 from pylab import * n = 1024 X = np.random.normal(0, 1, n) Y = np.random.normal(0, 1, n) T = np.arctan2(Y, X) axes([0.025, 0.025, 0.95, 0.95]) scatter(X, Y, s=75, c=T, alpha=.5) xlim(-1.5, 1.5), xticks([]) ylim(-1.5, 1.5), yticks([]) savefig('figure/scatter_ex.png', dpi=48) show()
三.等高線圖(contour plots)
#!/usr/bin/env python #encoding: utf-8 from pylab import * def f(x, y): return (1-x/2+x**5+y**3)*np.exp(-x**2-y**2) n = 256 x = np.linspace(-3, 3, n) y = np.linspace(-3, 3, n) X, Y = np.meshgrid(x, y) axes([0.025, 0.025, 0.95, 0.95]) contourf(X, Y, f(X,Y), 8, alpha=.75, cmap=cm.hot) C = contour(X, Y, f(X,Y), 8, colors='black', linewidth=.5) clabel(C, inline=1, fontsize=10) xticks([]) yticks([]) savefig('figure/contour_ex.png', dpi=48) show()
四.餅圖(Pie charts)
#!/usr/bin/env python
#encoding: utf-8
from pylab import *
n = 20
Z = np.ones(n)
Z[-1] *= 2
axes([0.025, 0.025, 0.95, 0.95])
pie(Z, explode=Z*.05, colors = ['%f' % (i/float(n)) for i in range(n)])
gca().set_aspect('equal')
xticks([])
yticks([])
savefig('figure/pie_ex.png', dpi=48)
show()
五.極軸圖
#!/usr/bin/env python
#encoding: utf-8
from pylab import *
ax = axes([0.025, 0.025, 0.95, 0.95], polar=True)
N = 20
theta = np.arange(0.0, 2*np.pi, 2*np.pi/N)
radii = 10*np.random.rand(N)
width = np.pi/4*np.random.rand(N)
bars = bar(theta, radii, width=width, bottom=0.0)
for r,bar in zip(radii, bars):
bar.set_facecolor( cm.jet(r/10.))
bar.set_alpha(0.5)
ax.set_xticklabels([])
ax.set_yticklabels([])
savefig('figure/polar_ex.png', dpi=48)
show()
六.三維繪圖
#!/usr/bin/env python
#encoding: utf-8
from pylab import *
from mpl_toolkits.mplot3d import Axes3D
fig = figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.hot)
ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=cm.hot)
ax.set_zlim(-2, 2)
savefig('figure/plot3d_ex.png', dpi=48)
show()
七.數學公式
#!/usr/bin/env python
#encoding: utf-8
from pylab import *
eqs = []
eqs.append(r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2}\int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1\sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$")
eqs.append(r"$\frac{d\rho}{d t} + \rho \vec{v}\cdot\nabla\vec{v} = -\nabla p + \mu\nabla^2 \vec{v} + \rho \vec{g}$")
eqs.append(r"$\int_{-\infty}^\infty e^{-x^2}}dx=\sqrt{\pi}$")
eqs.append(r"$E = mc^2 = \sqrt{{m_0}^2c^4 + p^2c^2}$")
eqs.append((r"$F_G = G\frac{m_1m_2}{r^2}$"))
axes([0.025, 0.025, 0.95, 0.95])
for i in range(24):
index = np.random.randint(0, len(eqs))
eq = eqs[index]
size = np.random.uniform(12, 32)
x, y = np.random.uniform(0, 1, 2)
alpha = np.random.uniform(0.25, 0.75)
text(x, y, eq, ha='center', va='center', color='#11557c', alpha=alpha, transform=gca().transAxes, fontsize=size,
clip_on=True)
xticks([])
yticks([])
savefig('figure/text_ex.png', dpi=48)
show()
參考文獻
[1].http://reverland.org/python/2012/09/07/matplotlib-tutorial/