1. 程式人生 > >DAGScheduler原理剖析與原始碼分析

DAGScheduler原理剖析與原始碼分析

stage劃分演算法:必須對stage劃分演算法很清晰,知道自己的Application被劃分了幾個job,每個job被劃分了幾個stage,每個stage有哪些程式碼,只能在線上報錯的資訊上更快的發現問題或者效能調優。
這裡寫圖片描述

//DAGscheduler的job排程的核心入口
  private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
      //使用觸發job的最後一個RDD建立finalStage
var finalStage: ResultStage = null try { // New stage creation may throw an exception if, for example, jobs are run on a // HadoopRDD whose underlying HDFS files have been deleted. //將stage新增到DAGSchedule快取中 finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite) } catch
{ case e: Exception => logWarning("Creating new stage failed due to exception - job: " + jobId, e) listener.jobFailed(e) return } //使用finalStage建立一個Job(最後的stage就是finalStage) val job = new ActiveJob(jobId, finalStage, callSite, listener, properties) clearCacheLocs() logInfo("Got job %s (%s) with %d output partitions"
.format( job.jobId, callSite.shortForm, partitions.length)) logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")") logInfo("Parents of final stage: " + finalStage.parents) logInfo("Missing parents: " + getMissingParentStages(finalStage)) val jobSubmissionTime = clock.getTimeMillis() //將job加入到記憶體快取中 jobIdToActiveJob(jobId) = job activeJobs += job finalStage.setActiveJob(job) val stageIds = jobIdToStageIds(jobId).toArray val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo)) listenerBus.post( SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties)) //使用submitStage提交finalStage //這個方法的呼叫,其實會導致第一個stage的提交,其餘的stage都儲存在棧裡。 submitStage(finalStage) //提交等待的stage submitWaitingStages() } //提交stage的方法 //這裡其實就是stage劃分演算法的入口 //但是stage劃分演算法是submitStage()和getMissingParentStages()方法共同組成的。 private def submitStage(stage: Stage) { val jobId = activeJobForStage(stage) if (jobId.isDefined) { logDebug("submitStage(" + stage + ")") if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) { //呼叫getMissingParentStages()獲取父stage val missing = getMissingParentStages(stage).sortBy(_.id) logDebug("missing: " + missing) if (missing.isEmpty) { logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents") submitMissingTasks(stage, jobId.get) } else { //遞迴呼叫submitStage()方法,去提交父stage,知道最後沒有父stage了。 //此時會提交stage0,其餘的stage都在waitingStages裡面了。 //這裡的遞迴相當於stage演算法的精髓 for (parent <- missing) { submitStage(parent) } // 並且將當前stage放入waitingStages佇列中 waitingStages += stage } } } else { abortStage(stage, "No active job for stage " + stage.id, None) } }
//獲取某個Stage的父Stage
//如果發現最後一個RDD的所有依賴都是窄依賴,就不會建立新的RDD。
//但是如果這個RDD寬依賴了某個RDD,那麼將會建立一個新的stage。 
//並且將新的stage立即返回。
  private def getMissingParentStages(stage: Stage): List[Stage] = {
    val missing = new HashSet[Stage]
    val visited = new HashSet[RDD[_]]
    // We are manually maintaining a stack here to prevent StackOverflowError
    // 定義了一個棧

    val waitingForVisit = new Stack[RDD[_]]
    def visit(rdd: RDD[_]) {
      if (!visited(rdd)) {
        visited += rdd
        val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
        if (rddHasUncachedPartitions) {
          for (dep <- rdd.dependencies) {
            dep match {
            //如果是寬依賴的話。
            //其實對於每一個有shuffle操作的運算元,底層都對應了三個RDD(MapPartitionsRDD,shuffleRDD,MapPartitionsRDD)
            //shuffleRdd的map端的會劃分到新的RDD
              case shufDep: ShuffleDependency[_, _, _] =>
              //使用寬依賴的RDD建立一個stage,並且會將isshufflemap設定為true
              //預設最後一個stage不是shufflemap Stage
              //但是fianalstage之前的stage都是shuffleMap stage
                val mapStage = getShuffleMapStage(shufDep, stage.firstJobId)
                if (!mapStage.isAvailable) {
                  missing += mapStage
                }
                //如果是窄依賴,就將RDD放入棧中
              case narrowDep: NarrowDependency[_] =>
                waitingForVisit.push(narrowDep.rdd)
            }
          }
        }
      }
    //首先,向棧中推入了stage的最後一個RDD
    waitingForVisit.push(stage.rdd)
    while (waitingForVisit.nonEmpty) {
    //對stage的最後一個RDD,呼叫Visit()方法
      visit(waitingForVisit.pop())
    }
    missing.toList
  }
//提交stage,為stage建立一批task,task數量與partition數量相同
 private def submitMissingTasks(stage: Stage, jobId: Int) {
    logDebug("submitMissingTasks(" + stage + ")")
    // 獲取partition數量
    stage.pendingPartitions.clear()


    val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()
    initialized.
    if (stage.internalAccumulators.isEmpty || stage.numPartitions == partitionsToCompute.size) {
      stage.resetInternalAccumulators()
    }
    val properties = jobIdToActiveJob(jobId).properties
     //將stage加入runningStages佇列
    runningStages += stage

    stage match {
      case s: ShuffleMapStage =>
        outputCommitCoordinator.stageStart(stage = s.id, maxPartitionId = s.numPartitions - 1)
      case s: ResultStage =>
        outputCommitCoordinator.stageStart(
          stage = s.id, maxPartitionId = s.rdd.partitions.length - 1)
    }
    val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
      stage match {
        case s: ShuffleMapStage =>
          partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
        case s: ResultStage =>
          val job = s.activeJob.get
          partitionsToCompute.map { id =>
            val p = s.partitions(id)
            (id, getPreferredLocs(stage.rdd, p))
          }.toMap
      }
    } catch {
      case NonFatal(e) =>
        stage.makeNewStageAttempt(partitionsToCompute.size)
        listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
        abortStage(stage, s"Task creation failed: $e\n${e.getStackTraceString}", Some(e))
        runningStages -= stage
        return
    }

    stage.makeNewStageAttempt(partitionsToCompute.size, taskIdToLocations.values.toSeq)
    listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))

    var taskBinary: Broadcast[Array[Byte]] = null
    try {

        case stage: ShuffleMapStage =>
          closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef).array()
        case stage: ResultStage =>
          closureSerializer.serialize((stage.rdd, stage.func): AnyRef).array()
      }

      taskBinary = sc.broadcast(taskBinaryBytes)
    } catch {

      case e: NotSerializableException =>
        abortStage(stage, "Task not serializable: " + e.toString, Some(e))
        runningStages -= stage
        return
      case NonFatal(e) =>
        abortStage(stage, s"Task serialization failed: $e\n${e.getStackTraceString}", Some(e))
        runningStages -= stage
        return
    }
//為stage建立指定數量的task
    val tasks: Seq[Task[_]] = try {
      stage match {
      //除了final Stage不是shuffle Stage。
        case stage: ShuffleMapStage =>
          partitionsToCompute.map { id =>
          //給每一個partition建立一個task
          //給每個task最佳位置
            val locs = taskIdToLocations(id)
            val part = stage.rdd.partitions(id)
            //給shuffle Stage建立ShuffleStageTask
            new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
              taskBinary, part, locs, stage.internalAccumulators)
          }
        //不是S戶發放了 Stage就是finalStage。那麼建立ResultStage
        case stage: ResultStage =>
          val job = stage.activeJob.get
          partitionsToCompute.map { id =>
           //給每一個partition建立一個task
          //給每個task最佳位置(就是從stage的最後位置開始找,哪個RDD的Partition被Cache了,或被checkPoint了,那麼task的最佳位置就是RDD被Cache或者被CheckPoint的位置)
            val p: Int = stage.partitions(id)
            val part = stage.rdd.partitions(p)
            val locs = taskIdToLocations(id)
            new ResultTask(stage.id, stage.latestInfo.attemptId,
              taskBinary, part, locs, id, stage.internalAccumulators)
          }
      }
    } catch {
      case NonFatal(e) =>
        abortStage(stage, s"Task creation failed: $e\n${e.getStackTraceString}", Some(e))
        runningStages -= stage
        return
    }

    if (tasks.size > 0) {
      logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
      stage.pendingPartitions ++= tasks.map(_.partitionId)
      logDebug("New pending partitions: " + stage.pendingPartitions)
      taskScheduler.submitTasks(new TaskSet(
        tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))
      stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
    } else {
      markStageAsFinished(stage, None)

      val debugString = stage match {
        case stage: ShuffleMapStage =>
          s"Stage ${stage} is actually done; " +
            s"(available: ${stage.isAvailable}," +
            s"available outputs: ${stage.numAvailableOutputs}," +
            s"partitions: ${stage.numPartitions})"
        case stage : ResultStage =>
          s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})"
      }
      logDebug(debugString)
    }
  }

stage劃分演算法總結:

 - 從finalstage倒推
 - 通過寬依賴進行stage劃分
 - 通過遞迴,優先提交父stage