HDU 1542 Atlantis (線段樹 + 掃描線 + 離散化)
阿新 • • 發佈:2019-02-12
Atlantis
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 8998 Accepted Submission(s): 3856
Problem Description There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
Input The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.
The input file is terminated by a line containing a single 0. Don’t process it.
Output For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.
Output a blank line after each test case.
Sample Input 2 10 10 20 20 15 15 25 25.5 0
Sample Output Test case #1 Total explored area: 180.00 所謂的離散化,大家可以簡單的理解為,將一組很大的資料,濃縮為一組很小的資料,用這組資料來代替原資料的作用,
#include <cstdio> #include <cstring> #include <algorithm> #include <vector> #include <queue> using namespace std; typedef long long LL; #define lson rt << 1, l, mid #define rson rt << 1|1, mid + 1, r const int MAXN = 2000 + 5; int Col[MAXN << 2], n, cnt, res; double X[MAXN << 2], Sum[MAXN << 2]; struct seg { double l,r,h; int s; seg() {} seg(double l,double r,double h,int s):l(l),r(r),h(h),s(s) {} bool operator < (const seg & object) const { return h < object.h; } } S[MAXN]; void pushup(int rt,int l,int r) { if (Col[rt]) Sum[rt] = X[r+1] - X[l];//利用[ , ),這個區間性質,左閉右開 else if (l == r) Sum[rt] = 0; else Sum[rt] = Sum[rt<<1] + Sum[rt<<1|1]; } void update(int L, int R, int c,int rt,int l, int r) { if(L <= l && r <= R) { Col[rt] += c; pushup(rt,l,r); return ; } int mid = (l + r) >> 1; if(L <= mid) update(L, R, c, lson); if(R > mid) update(L, R, c, rson); pushup(rt,l,r); } int binary_find(double x){ int lb = -1,ub = res - 1; while(ub - lb > 1){ int mid = (lb + ub) >> 1; if(X[mid] >= x) ub = mid; else lb = mid; } return ub; } int main() { int cas = 1; while(~ scanf("%d", &n), n) { cnt = res = 0; for(int i = 0 ; i < n; i ++) { double a,b,c,d; scanf("%lf%lf%lf%lf",&a, &b, &c,&d); S[cnt] = seg(a, c, b, 1); X[cnt ++] = a; S[cnt] = seg(a, c, d, -1); X[cnt ++] = c; } sort(X, X + cnt); sort(S, S + cnt); res ++; for(int i = 1; i < cnt; i ++) { if(X[i] != X[i - 1]) X[res ++] = X[i]; } memset(Sum, 0, sizeof(Sum)); memset(Col, 0, sizeof(Col)); double ans = 0; for(int i = 0;i < cnt - 1;i ++){ int l = binary_find(S[i].l); int r = binary_find(S[i].r) - 1;//利用[ , ),這個區間性質,左閉右開 update(l, r, S[i].s, 1, 0, res - 1); ans += Sum[1] * (S[i + 1].h - S[i].h); } printf("Test case #%d\nTotal explored area: %.2lf\n\n",cas++ , ans); } return 0; }