Tensorflow 的動態機制Eager Execution
從tensorflow的1.5版起,tensorflow也開始啟用動態機制Eager Execution了,它支援大部分tensorflow運作和gpu加速
Eager Execution是一個很靈活的機器學習平臺,可以提供給(An intuitive interface,Easier debugging,Natural control flow)
下面幾行程式碼可以很容易的幫我們入門使用Eager Execution,使用Eager Execution可以很及時的返回運算結果:
>>> import tensorflow as tf
>>> import tensorflow.contrib.eager as tfe
>>> tfe.enable_eager_execution()
>>> x = [[2.]]
>>> m = tf.matmul(x, x)
>>> print(m)
tf.Tensor([[ 4.]], shape=(1, 1), dtype=float32)
而以往不使用Eager Execution的結果便是:
>>> x = [[2.]]
>>> m = tf.matmul(x, x)
>>> print(m)
Tensor("MatMul:0", shape=(1, 1), dtype=float32)
需要在一個session裡執行:
>>> import tensorflow as tf
>>> x = [[2.]]
>>> m = tf.matmul(x, x)
>>> print(m)
Tensor("MatMul:0", shape=(1, 1), dtype=float32)
>>> sess=tf.Session()
>>> print(sess.run(m))
[[ 4.]]
>>> import tensorflow as tf
>>> x = [[2.]]
>>> m = tf.matmul(x, x)
>>> print(m)
Tensor("MatMul:0", shape=(1, 1), dtype=float32)
>>> sess=tf.Session()
>>> print(sess.run(m))
[[ 4.]]
簡單的Eager Execution初步嘗試