機器學習實戰python版第三章決策樹程式碼理解
今天開始學習第三章決策樹。
前面對決策樹的講解我就不寫了,書上寫的都很清楚,就是根據特徵的不同逐步的對資料進行分類,形狀像一個倒立的樹。決策樹演算法比kNN的演算法複雜度要低,理解起來也有一定難度。
資訊增益
每一組資料都有自己的熵,資料要整齊,熵越低。也就是說屬於同一類的資料熵低,越混合的資料熵越高。計算資料集的熵程式碼如下:
<span style="font-size:24px;">def calcShannonEnt(dataSet): numEntries = len(dataSet)#資料集的行 labelCounts = {} for featVec in dataSet: #the the number of unique elements and their occurance currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key])/numEntries shannonEnt -= prob * log(prob,2) #log base 2 return shannonEnt </span>
劃分資料集
就是根據一個特徵把資料進行劃分。程式碼如下:
<span style="font-size:24px;">def splitDataSet(dataSet,axis,value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis]#axis = 0時 這個列表是空的 reducedFeatVec.extend(featVec[axis + 1:]) retDataSet.append(reducedFeatVec) return retDataSet</span>
append,和extend這兩個函式很有意思。
結果如下:
<span style="font-size:24px;">>>> import trees >>> myDat,labels = trees.createDataSet() >>> myDat [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] >>> trees.splitDataSet(myDat,0,1) [[1, 'yes'], [1, 'yes'], [0, 'no']]</span>
但是實際操作中我們不能總能人工輸入分類依據的特徵。我們需要機器根據資料的特徵自己判斷最佳的分類特徵。程式碼如下:
<span style="font-size:24px;">def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #列減一
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0; bestFeature = -1
for i in range(numFeatures): # 012遍歷資料集
featList = [example[i] for example in dataSet]#create a list of all the examples of this feature全部資料組的第i個數據,
uniqueVals = set(featList) #資料組的集,即{0,1}。{yes,no}
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy #calculate the info gain; ie reduction in entropy熵越低越好。
if (infoGain > bestInfoGain): #compare this to the best gain so far
bestInfoGain = infoGain #if better than current best, set to best
bestFeature = i
return bestFeature #returns an integer</span>
結果如下:
<span style="font-size:24px;">>>> import trees
>>> myDat,labels = trees.createDataSet()
>>> trees.chooseBestFeatureToSplit(myDat)
0</span>
建立決策樹
書中的內容還是比較好理解的,樹的建立理論也寫得很詳細,主要是程式碼比較難懂,因為python的程式碼很簡潔,所以看起來也就更難一些。
建立樹的函式程式碼:
<span style="font-size:24px;">def majorityCnt(classList):
classCount={}
for vote in classList:
if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]#stop splitting when all of the classes are equal
if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:] #copy all of labels, so trees don't mess up existing labels
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree
</span>
首先這是一個遞迴函式,就是函式自己不停的呼叫自己,當遇到結束情況時在一步步返回。
if classList.count(classList[0]) == len(classList):
return classList[0]#stop splitting when all of the classes are equal
類的資料都是一樣的時候
if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
return majorityCnt(classList)
只有一個數據的時候
myTree = {bestFeatLabel:{}}建立一個樹,為了後面的賦值。
del(labels[bestFeat])刪除類標籤
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:] #copy all of labels, so trees don't mess up existing labels
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)遞迴,每次呼叫兩個creatTree,分兩個字典給賦值。
結果如下:
<span style="font-size:24px;">>>> myDat,labels = trees.createDataSet()
>>> myTree = trees.createTree(myDat,labels)
>>> myTrees
Traceback (most recent call last):
File "<pyshell#10>", line 1, in <module>
myTrees
NameError: name 'myTrees' is not defined
>>> myTree
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}</span>
下面的內容明天再寫,希望大家多多指導!