1. 程式人生 > >貪心、爬山、模擬退火演算法

貪心、爬山、模擬退火演算法

貪心演算法總是作出在當前看來最好的選擇。也就是說貪心演算法並不從整體最優考慮,它所作出的選擇只是在某種意義上的區域性最優選擇。當然,希望貪心演算法得到的最終結果也是整體最優的。雖然貪心演算法不能對所有問題都得到整體最優解,但對許多問題它能產生整體最優解。如單源最短路經問題,最小生成樹問題等。在一些情況下,即使貪心演算法不能得到整體最優解,其最終結果卻是最優解的很好近似。

介紹模擬退火前,先介紹爬山演算法。爬山演算法是一種簡單的貪心搜尋演算法,該演算法每次從當前解的臨近解空間中選擇一個最優解作為當前解,直到達到一個區域性最優解。

         爬山演算法實現很簡單,其主要缺點是會陷入區域性最優解,而不一定能搜尋到全域性最優解。如圖1所示:假設C點為當前解,爬山演算法搜尋到A點這個區域性最優解就會停止搜尋,因為在A點無論向那個方向小幅度移動都不能得到更優的解。


圖1 

三. 模擬退火演算法虛擬碼

程式碼

/*
* J(y):在狀態y時的評價函式值
* Y(i):表示當前狀態
* Y(i+1):表示新的狀態
* r: 用於控制降溫的快慢 
* T: 系統的溫度,系統初始應該要處於一個高溫的狀態
* T_min :溫度的下限,若溫度T達到T_min,則停止搜尋
*/
while( T > T_min )
{
  dE = J( Y(i+1) ) - J( Y(i) ) ; 

  if ( dE >=0 ) //表達移動後得到更優解,則總是接受移動
Y(i+1) = Y(i) ; //接受從Y(i)到Y(i+1)的移動
  else
  {
// 函式exp( dE/T )的取值範圍是(0,1) ,dE/T越大,則exp( dE/T )也
if ( exp( dE/T ) > random( 0 , 1 ) )
Y(i+1) = Y(i) ; //接受從Y(i)到Y(i+1)的移動
  }
  T = r * T ; //降溫退火 ,0<r<1 。r越大,降溫越慢;r越小,降溫越快
  /*
  * 若r過大,則搜尋到全域性最優解的可能會較高,但搜尋的過程也就較長。若r過小,則搜尋的過程會很快,但最終可能會達到一個區域性最優值
  */
  i ++ ;
}

四. 使用模擬退火演算法解決旅行商問題

  旅行商問題 ( TSP , Traveling Salesman Problem ) :有N個城市,要求從其中某個問題出發,唯一遍歷所有城市,再回到出發的城市,求最短的路線。

  旅行商問題屬於所謂的NP完全問題,精確的解決TSP只能通過窮舉所有的路徑組合,其時間複雜度是O(N!) 。

  使用模擬退火演算法可以比較快的求出TSP的一條近似最優路徑。(使用遺傳演算法也是可以的,我將在下一篇文章中介紹)模擬退火解決TSP的思路:

1. 產生一條新的遍歷路徑P(i+1),計算路徑P(i+1)的長度L( P(i+1) )

2. 若L(P(i+1)) < L(P(i)),則接受P(i+1)為新的路徑,否則以模擬退火的那個概率接受P(i+1) ,然後降溫

3. 重複步驟1,2直到滿足退出條件

  產生新的遍歷路徑的方法有很多,下面列舉其中3種:

1. 隨機選擇2個節點,交換路徑中的這2個節點的順序。

2. 隨機選擇2個節點,將路徑中這2個節點間的節點順序逆轉。

3. 隨機選擇3個節點m,n,k,然後將節點m與n間的節點移位到節點k後面。

五. 演算法評價

        模擬退火演算法是一種隨機演算法,並不一定能找到全域性的最優解,可以比較快的找到問題的近似最優解。 如果引數設定得當,模擬退火演算法搜尋效率比窮舉法要高。