[SCOI2016]幸運數字 樹鏈剖分,線性基
阿新 • • 發佈:2019-02-14
org const 是我 efi 復雜度 ack push_back 插入 space 多過了這題。當然不吸氧是布星的。
[SCOI2016]幸運數字
LG傳送門
為了快樂,我們用樹剖寫這題,你看樹剖寫的還可以帶插入。
強行樹剖,線段樹上每個結點維護一個線性基,每次查詢暴力合並。
瞎分析一波復雜度:樹剖兩點之間\(\log n\)條重鏈,每條重鏈在線段樹上最多合並\(\log n\)次,合並兩個線性基最多需要\(\log m\)次插入,每次插入\(\log m\)(設\(m\)為值域)。總復雜度大概是\(O(n (\log n) ^ 2 (\log m) ^ 2)\)可能錯了不要怪我。
算起來大概是\(1.62 * 10 ^ {10}\)的規模,但是我們是有信仰的oier,我們要堅信這個東西是跑不滿的。所以我就最慢的點\(1.1s\)
//written by newbiechd #include <cstdio> #include <cctype> #include <vector> #define R register #define I inline #define B 1000000 #define L long long using namespace std; const int N = 20003; char buf[B], *p1, *p2; I char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, B, stdin), p1 == p2) ? EOF : *p1++; } I L rd() { L f = 0; R char c = gc(); while (c < 48 || c > 57) c = gc(); while (c > 47 && c < 58) f = f * 10 + (c ^ 48), c = gc(); return f; } int s[N], fa[N], dep[N], siz[N], son[N], dfn[N], top[N], n, tim; L w[N], val[N]; vector <int> g[N]; I L min(L x, L y) { return x < y ? x : y; } I L max(L x, L y) { return x > y ? x : y; } I void swap(L &x, L &y) { x ^= y, y ^= x, x ^= y; } I void swap(int &x, int &y) { x ^= y, y ^= x, x ^= y; } struct base { vector <L> v; I void insert(L x) { R int i, s = v.size(); for (i = 0; i < s; ++i) x = min(x, x ^ v[i]); if (x) { v.push_back(x); for (i = s; i; --i) if (v[i] > v[i - 1]) swap(v[i], v[i - 1]); } } I void merge(base x) { for (R int i = 0, s = x.v.size(); i < s; ++i) insert(x.v[i]); } I L query() { L o = 0; for (R int i = 0, s = v.size(); i < s; ++i) o = max(o, o ^ v[i]); return o; } }e[N << 2], ans; void dfs1(int x, int f) { fa[x] = f, dep[x] = dep[f] + 1, siz[x] = 1; for (R int i = 0, y, m = 0; i < s[x]; ++i) if ((y = g[x][i]) ^ f) { dfs1(y, x), siz[x] += siz[y]; if (siz[y] > m) m = siz[y], son[x] = y; } } void dfs2(int x, int t) { dfn[x] = ++tim, val[tim] = w[x], top[x] = t; if (son[x]) dfs2(son[x], t); for (R int i = 0, y; i < s[x]; ++i) if ((y = g[x][i]) ^ fa[x] && y ^ son[x]) dfs2(y, y); } void build(int k, int l, int r) { for (R int i = l; i <= r; ++i) e[k].insert(val[i]); if (l == r) return ; R int p = k << 1, q = p | 1, m = (l + r) >> 1; build(p, l, m), build(q, m + 1, r); } void tquery(int k, int l, int r, int x, int y) { if (x <= l && r <= y) { ans.merge(e[k]); return ; } R int p = k << 1, q = p | 1, m = (l + r) >> 1; if (x <= m) tquery(p, l, m, x, y); if (m < y) tquery(q, m + 1, r, x, y); } I L query(int x, int y) { ans.v.clear(); while (top[x] ^ top[y]) { if (dep[top[x]] < dep[top[y]]) swap(x, y); tquery(1, 1, n, dfn[top[x]], dfn[x]), x = fa[top[x]]; } if (dep[x] > dep[y]) swap(x, y); tquery(1, 1, n, dfn[x], dfn[y]); return ans.query(); } int main() { R int Q, i, x, y; n = rd(), Q = rd(); for (i = 1; i <= n; ++i) w[i] = rd(); for (i = 1; i < n; ++i) x = rd(), y = rd(), g[x].push_back(y), g[y].push_back(x); for (i = 1; i <= n; ++i) s[i] = g[i].size(); dfs1(1, 0), dfs2(1, 1), build(1, 1, n); for (i = 1; i <= Q; ++i) x = rd(), y = rd(), printf("%lld\n", query(x, y)); return 0; }
有\(O(n \log n \log m)\)的點分治寫法,但是我懶得寫了。
[SCOI2016]幸運數字 樹鏈剖分,線性基