python決策樹模型預測銷售量
阿新 • • 發佈:2019-02-15
import pandas as pd inputfile = 'C:/Users/Administrator/Desktop/demo/data/sales_data.xls' data = pd.read_excel(inputfile, index_col = u'序號') data[data == u'好'] = 1 data[data == u'是'] = 1 data[data == u'高'] = 1 data[data != 1] = -1 x = data.iloc[:,:3].as_matrix().astype(int) y = data.iloc[:,3].as_matrix().astype(int) from sklearn.tree import DecisionTreeClassifier as DTC dtc = DTC(criterion='entropy') #建立決策樹模型,基於資訊熵 dtc.fit(x, y) #訓練模型 #匯入相關函式,視覺化決策樹 #匯出結果為.dot檔案,需要安裝Graphviz才能轉化為pdf from sklearn.tree import export_graphviz x = pd.DataFrame(x) from sklearn.externals.six import StringIO x = pd.DataFrame(x) with open("tree.dot", 'w') as f: f = export_graphviz(dtc, feature_names = x.columns, out_file = f) #在匯出的檔案中新增兩行程式碼,用於識別中文字型 edge[fontname=”SimHei”] node[fontname=”SimHei”] #需要安裝Graphviz轉化成決策樹