數字證書https通訊過程
文章轉自:http://www.cnblogs.com/jhj117/p/5601585.html
文中首先解釋了加密解密的一些基礎知識和概念,然後通過一個加密通訊過程的例子說明了加密演算法的作用,以及數字證書的出現所起的作用。接著對數字證書做一個詳細的解釋,並討論一下windows中數字證書的管理,最後演示使用makecert生成數字證書。如果發現文中有錯誤的地方,或者有什麼地方說得不夠清楚,歡迎指出!
1、基礎知識
這部分內容主要解釋一些概念和術語,最好是先理解這部分內容。
1.1、公鑰密碼體制(public-key cryptography)
公鑰密碼體制分為三個部分,公鑰、私鑰、加密解密演算法,它的加密解密過程如下:
加密:通過加密演算法和公鑰對內容(或者說明文)進行加密,得到密文。加密過程需要用到公鑰。
解密:通過解密演算法和私鑰對密文進行解密,得到明文。解密過程需要用到解密演算法和私鑰。注意,由公鑰加密的內容,只能由私鑰進行解密,也就是說,由公鑰加密的內容,如果不知道私鑰,是無法解密的。
公鑰密碼體制的公鑰和演算法都是公開的(這是為什麼叫公鑰密碼體制的原因),私鑰是保密的。大家都以使用公鑰進行加密,但是隻有私鑰的持有者才能解密。在實際的使用中,有需要的人會生成一對公鑰和私鑰,把公鑰釋出出去給別人使用,自己保留私鑰。
1.2、對稱加密演算法(symmetric key algorithms)
在對稱加密演算法中,加密使用的金鑰和解密使用的金鑰是相同的。也就是說,加密和解密都是使用的同一個金鑰。因此對稱加密演算法要保證安全性的話,金鑰要做好保密,只能讓使用的人知道,不能對外公開。這個和上面的公鑰密碼體制有所不同,公鑰密碼體制中加密是用公鑰,解密使用私鑰,而對稱加密演算法中,加密和解密都是使用同一個金鑰,不區分公鑰和私鑰。
// 金鑰,一般就是一個字串或數字,在加密或者解密時傳遞給加密/解密演算法。前面在公鑰密碼體制中說到的公鑰、私鑰就是金鑰,公鑰是加密使用的金鑰,私鑰是解密使用的金鑰。
1.3、非對稱加密演算法(asymmetrickey algorithms)
在非對稱加密演算法中,加密使用的金鑰和解密使用的金鑰是不相同的。前面所說的公鑰密碼體制就是一種非對稱加密演算法,他的公鑰和是私鑰是不能相同的,也就是說加密使用的金鑰和解密使用的金鑰不同,因此它是一個非對稱加密演算法。
1.4、RSA簡介
RSA是一種公鑰密碼體制,現在使用得很廣泛。如果對RSA本身有興趣的,後面看我有沒有時間寫個RSA的具體介紹。
RSA密碼體制是一種公鑰密碼體制,公鑰公開,私鑰保密,它的加密解密演算法是公開的。由公鑰加密的內容可以並且只能由私鑰進行解密,並且由私鑰加密的內容可以並且只能由公鑰進行解密。也就是說,RSA的這一對公鑰、私鑰都可以用來加密和解密,並且一方加密的內容可以由並且只能由對方進行解密。
1.5、簽名和加密
我們說加密,是指對某個內容加密,加密後的內容還可以通過解密進行還原。比如我們把一封郵件進行加密,加密後的內容在網路上進行傳輸,接收者在收到後,通過解密可以還原郵件的真實內容。
這裡主要解釋一下簽名,簽名就是在資訊的後面再加上一段內容,可以證明資訊沒有被修改過,怎麼樣可以達到這個效果呢?一般是對資訊做一個hash計算得到一個hash值,注意,這個過程是不可逆的,也就是說無法通過hash值得出原來的資訊內容。在把資訊傳送出去時,把這個hash值加密後做為一個簽名和資訊一起發出去。接收方在收到資訊後,會重新計算資訊的hash值,並和資訊所附帶的hash值(解密後)進行對比,如果一致,就說明資訊的內容沒有被修改過,因為這裡hash計算可以保證不同的內容一定會得到不同的hash值,所以只要內容一被修改,根據資訊內容計算的hash值就會變化。當然,不懷好意的人也可以修改資訊內容的同時也修改hash值,從而讓它們可以相匹配,為了防止這種情況,hash值一般都會加密後(也就是簽名)再和資訊一起傳送,以保證這個hash值不被修改。至於如何讓別人可以解密這個簽名,這個過程涉及到數字證書等概念,我們後面在說到數字證書時再詳細說明,這裡您先只需先理解簽名的這個概念。
2、一個加密通訊過程的演化
我們來看一個例子,現在假設“伺服器”和“客戶”要在網路上通訊,並且他們打算使用RSA(參看前面的RSA簡介)來對通訊進行加密以保證談話內容的安全。由於是使用RSA這種公鑰密碼體制,“伺服器”需要對外發布公鑰(演算法不需要公佈,RSA的演算法大家都知道),自己留著私鑰。“客戶”通過某些途徑拿到了“伺服器”釋出的公鑰,客戶並不知道私鑰。“客戶”具體是通過什麼途徑獲取公鑰的,我們後面再來說明,下面看一下雙方如何進行保密的通訊:
2.1 第一回合:
“客戶”->“伺服器”:你好
“伺服器”->“客戶”:你好,我是伺服器
“客戶”->“伺服器”:????
因為訊息是在網路上傳輸的,有人可以冒充自己是“伺服器”來向客戶傳送資訊。例如上面的訊息可以被黑客截獲如下:
“客戶”->“伺服器”:你好
“伺服器”->“客戶”:你好,我是伺服器
“客戶”->“黑客”:你好 // 黑客在“客戶”和“伺服器”之間的某個路由器上截獲“客戶”發給伺服器的資訊,然後自己冒充“伺服器”
“黑客”->“客戶”:你好,我是伺服器
因此“客戶”在接到訊息後,並不能肯定這個訊息就是由“伺服器”發出的,某些“黑客”也可以冒充“伺服器”發出這個訊息。如何確定資訊是由“伺服器”發過來的呢?有一個解決方法,因為只有伺服器有私鑰,所以如果只要能夠確認對方有私鑰,那麼對方就是“伺服器”。因此通訊過程可以改進為如下:
2.2 第二回合:
“客戶”->“伺服器”:你好
“伺服器”->“客戶”:你好,我是伺服器
“客戶”->“伺服器”:向我證明你就是伺服器
“伺服器”->“客戶”:你好,我是伺服器 {你好,我是伺服器}[私鑰|RSA]
// 注意這裡約定一下,{} 表示RSA加密後的內容,[ | ]表示用什麼金鑰和演算法進行加密,後面的示例中都用這種表示方式,例如上面的 {你好,我是伺服器}[私鑰|RSA] 就表示用私鑰對“你好,我是伺服器”進行加密後的結果。
為了向“客戶”證明自己是“伺服器”,“伺服器”把一個字串用自己的私鑰加密,把明文和加密後的密文一起發給“客戶”。對於這裡的例子來說,就是把字串“你好,我是伺服器”和這個字串用私鑰加密後的內容 {你好,我是伺服器}[私鑰|RSA]發給客戶。
“客戶”收到資訊後,她用自己持有的公鑰解密密文,和明文進行對比,如果一致,說明資訊的確是由伺服器發過來的。也就是說“客戶”把 {你好,我是伺服器}[私鑰|RSA] 這個內容用公鑰進行解密,然後和“你好,我是伺服器”對比。因為由“伺服器”用私鑰加密後的內容,由並且只能由公鑰進行解密,私鑰只有“伺服器”持有,所以如果解密出來的內容是能夠對得上的,那說明資訊一定是從“伺服器”發過來的。
假設“黑客”想冒充“伺服器”:
“黑客”->“客戶”:你好,我是伺服器
“客戶”->“黑客”:向我證明你就是伺服器
“黑客”->“客戶”:你好,我是伺服器 {你好,我是伺服器}[???|RSA] //這裡黑客無法冒充,因為他不知道私鑰,無法用私鑰加密某個字串後傳送給客戶去驗證。
“客戶”->“黑客”:????
由於“黑客”沒有“伺服器”的私鑰,因此它傳送過去的內容,“客戶”是無法通過伺服器的公鑰解密的,因此可以認定對方是個冒牌貨!
到這裡為止,“客戶”就可以確認“伺服器”的身份了,可以放心和“伺服器”進行通訊,但是這裡有一個問題,通訊的內容在網路上還是無法保密。為什麼無法保密呢?通訊過程不是可以用公鑰、私鑰加密嗎?其實用RSA的私鑰和公鑰是不行的,我們來具體分析下過程,看下面的演示:
2.3 第三回合:
“客戶”->“伺服器”:你好
“伺服器”->“客戶”:你好,我是伺服器
“客戶”->“伺服器”:向我證明你就是伺服器
“伺服器”->“客戶”:你好,我是伺服器 {你好,我是伺服器}[私鑰|RSA]
“客戶”->“伺服器”:{我的帳號是aaa,密碼是123,把我的餘額的資訊發給我看看}[公鑰|RSA]
“伺服器”->“客戶”:{你的餘額是100元}[私鑰|RSA]
注意上面的的資訊 {你的餘額是100元}[私鑰],這個是“伺服器”用私鑰加密後的內容,但是我們之前說了,公鑰是釋出出去的,因此所有的人都知道公鑰,所以除了“客戶”,其它的人也可以用公鑰對{你的餘額是100元}[私鑰]進行解密。所以如果“伺服器”用私鑰加密發給“客戶”,這個資訊是無法保密的,因為只要有公鑰就可以解密這內容。然而“伺服器”也不能用公鑰對傳送的內容進行加密,因為“客戶”沒有私鑰,傳送個“客戶”也解密不了。
這樣問題就又來了,那又如何解決呢?在實際的應用過程,一般是通過引入對稱加密來解決這個問題,看下面的演示:
2.4 第四回合:
“客戶”->“伺服器”:你好
“伺服器”->“客戶”:你好,我是伺服器
“客戶”->“伺服器”:向我證明你就是伺服器
“伺服器”->“客戶”:你好,我是伺服器 {你好,我是伺服器}[私鑰|RSA]
“客戶”->“伺服器”:{我們後面的通訊過程,用對稱加密來進行,這裡是對稱加密演算法和金鑰}[公鑰|RSA] //藍色字型的部分是對稱加密的演算法和金鑰的具體內容,客戶把它們傳送給伺服器。
“伺服器”->“客戶”:{OK,收到!}[金鑰|對稱加密演算法]
“客戶”->“伺服器”:{我的帳號是aaa,密碼是123,把我的餘額的資訊發給我看看}[金鑰|對稱加密演算法]
“伺服器”->“客戶”:{你的餘額是100元}[金鑰|對稱加密演算法]
在上面的通訊過程中,“客戶”在確認了“伺服器”的身份後,“客戶”自己選擇一個對稱加密演算法和一個金鑰,把這個對稱加密演算法和金鑰一起用公鑰加密後傳送給“伺服器”。注意,由於對稱加密演算法和金鑰是用公鑰加密的,就算這個加密後的內容被“黑客”截獲了,由於沒有私鑰,“黑客”也無從知道對稱加密演算法和金鑰的內容。
由於是用公鑰加密的,只有私鑰能夠解密,這樣就可以保證只有伺服器可以知道對稱加密演算法和金鑰,而其它人不可能知道(這個對稱加密演算法和金鑰是“客戶”自己選擇的,所以“客戶”自己當然知道如何解密加密)。這樣“伺服器”和“客戶”就可以用對稱加密演算法和金鑰來加密通訊的內容了。
總結一下,RSA加密演算法在這個通訊過程中所起到的作用主要有兩個:
因為私鑰只有“伺服器”擁有,因此“客戶”可以通過判斷對方是否有私鑰來判斷對方是否是“伺服器”。
客戶端通過RSA的掩護,安全的和伺服器商量好一個對稱加密演算法和金鑰來保證後面通訊過程內容的安全。
如果這裡您理解了為什麼不用RSA去加密通訊過程,而是要再確定一個對稱加密演算法來保證通訊過程的安全,那麼就說明前面的內容您已經理解了。(如果不清楚,再看下2.3和2.4,如果還是不清楚,那應該是我們說清楚,您可以留言提問。)
到這裡,“客戶”就可以確認“伺服器”的身份,並且雙方的通訊內容可以進行加密,其他人就算截獲了通訊內容,也無法解密。的確,好像通訊的過程是比較安全了。
但是這裡還留有一個問題,在最開始我們就說過,“伺服器”要對外發布公鑰,那“伺服器”如何把公鑰傳送給“客戶”呢?我們第一反應可能會想到以下的兩個方法:
a)把公鑰放到網際網路的某個地方的一個下載地址,事先給“客戶”去下載。
b)每次和“客戶”開始通訊時,“伺服器”把公鑰發給“客戶”。
但是這個兩個方法都有一定的問題,
對於a)方法,“客戶”無法確定這個下載地址是不是“伺服器”釋出的,你憑什麼就相信這個地址下載的東西就是“伺服器”釋出的而不是別人偽造的呢,萬一下載到一個假的怎麼辦?另外要所有的“客戶”都在通訊前事先去下載公鑰也很不現實。
對於b)方法,也有問題,因為任何人都可以自己生成一對公鑰和私鑰,他只要向“客戶”傳送他自己的私鑰就可以冒充“伺服器”了。示意如下:
“客戶”->“黑客”:你好 //黑客截獲“客戶”發給“伺服器”的訊息
“黑客”->“客戶”:你好,我是伺服器,這個是我的公鑰 //黑客自己生成一對公鑰和私鑰,把公鑰發給“客戶”,自己保留私鑰
“客戶”->“黑客”:向我證明你就是伺服器
“黑客”->“客戶”:你好,我是伺服器 {你好,我是伺服器}[黑客自己的私鑰|RSA] //客戶收到“黑客”用私鑰加密的資訊後,是可以用“黑客”發給自己的公鑰解密的,從而會誤認為“黑客”是“伺服器”
因此“黑客”只需要自己生成一對公鑰和私鑰,然後把公鑰傳送給“客戶”,自己保留私鑰,這樣由於“客戶”可以用黑客的公鑰解密黑客的私鑰加密的內容,“客戶”就會相信“黑客”是“伺服器”,從而導致了安全問題。這裡問題的根源就在於,大家都可以生成公鑰、私鑰對,無法確認公鑰對到底是誰的。如果能夠確定公鑰到底是誰的,就不會有這個問題了。例如,如果收到“黑客”冒充“伺服器”發過來的公鑰,經過某種檢查,如果能夠發現這個公鑰不是“伺服器”的就好了。
為了解決這個問題,數字證書出現了,它可以解決我們上面的問題。先大概看下什麼是數字證書,一個證書包含下面的具體內容:
證書的釋出機構
證書的有效期
公鑰
證書所有者(Subject)
簽名所使用的演算法
指紋以及指紋演算法
證書的內容的詳細解釋會在後面詳細解釋,這裡先只需要搞清楚一點,數字證書可以保證數字證書裡的公鑰確實是這個證書的所有者(Subject)的,或者證書可以用來確認對方的身份。也就是說,我們拿到一個數字證書,我們可以判斷出這個數字證書到底是誰的。至於是如何判斷的,後面會在詳細討論數字證書時詳細解釋。現在把前面的通訊過程使用數字證書修改為如下:
2.5 第五回合:
“客戶”->“伺服器”:你好
“伺服器”->“客戶”:你好,我是伺服器,這裡是我的數字證書 //這裡用證書代替了公鑰
“客戶”->“伺服器”:向我證明你就是伺服器
“伺服器”->“客戶”:你好,我是伺服器 {你好,我是伺服器}[私鑰|RSA]
注意,上面第二次通訊,“伺服器”把自己的證書發給了“客戶”,而不是傳送公鑰。“客戶”可以根據證書校驗這個證書到底是不是“伺服器”的,也就是能校驗這個證書的所有者是不是“伺服器”,從而確認這個證書中的公鑰的確是“伺服器”的。後面的過程和以前是一樣,“客戶”讓“伺服器”證明自己的身份,“伺服器”用私鑰加密一段內容連同明文一起發給“客戶”,“客戶”把加密內容用數字證書中的公鑰解密後和明文對比,如果一致,那麼對方就確實是“伺服器”,然後雙方協商一個對稱加密來保證通訊過程的安全。到這裡,整個過程就完整了,我們回顧一下:
2.6 完整過程:
step1: “客戶”向服務端傳送一個通訊請求
“客戶”->“伺服器”:你好
step2: “伺服器”向客戶傳送自己的數字證書。證書中有一個公鑰用來加密資訊,私鑰由“伺服器”持有
“伺服器”->“客戶”:你好,我是伺服器,這裡是我的數字證書
step3: “客戶”收到“伺服器”的證書後,它會去驗證這個數字證書到底是不是“伺服器”的,數字證書有沒有什麼問題,數字證書如果檢查沒有問題,就說明數字證書中的公鑰確實是“伺服器”的。檢查數字證書後,“客戶”會發送一個隨機的字串給“伺服器”用私鑰去加密,伺服器把加密的結果返回給“客戶”,“客戶”用公鑰解密這個返回結果,如果解密結果與之前生成的隨機字串一致,那說明對方確實是私鑰的持有者,或者說對方確實是“伺服器”。
“客戶”->“伺服器”:向我證明你就是伺服器,這是一個隨機字串 //前面的例子中為了方便解釋,用的是“你好”等內容,實際情況下一般是隨機生成的一個字串。
“伺服器”->“客戶”:{一個隨機字串}[私鑰|RSA]
step4: 驗證“伺服器”的身份後,“客戶”生成一個對稱加密演算法和金鑰,用於後面的通訊的加密和解密。這個對稱加密演算法和金鑰,“客戶”會用公鑰加密後傳送給“伺服器”,別人截獲了也沒用,因為只有“伺服器”手中有可以解密的私鑰。這樣,後面“伺服器”和“客戶”就都可以用對稱加密演算法來加密和解密通訊內容了。
“伺服器”->“客戶”:{OK,已經收到你發來的對稱加密演算法和金鑰!有什麼可以幫到你的?}[金鑰|對稱加密演算法]
“客戶”->“伺服器”:{我的帳號是aaa,密碼是123,把我的餘額的資訊發給我看看}[金鑰|對稱加密演算法]
“伺服器”->“客戶”:{你好,你的餘額是100元}[金鑰|對稱加密演算法]
…… //繼續其它的通訊
2.7 其它問題:
上面的過程已經十分接近HTTPS的真實通訊過程了,完全可以按照這個過程去理解HTTPS的工作原理。但是我為了方便解釋,上面有些細節沒有說到,有興趣的人可以看下這部分的內容。可以跳過不看,無關緊要。
【問題1】
上面的通訊過程中說到,在檢查完證書後,“客戶”傳送一個隨機的字串給“伺服器”去用私鑰加密,以便判斷對方是否真的持有私鑰。但是有一個問題,“黑客”也可以傳送一個字串給“伺服器”去加密並且得到加密後的內容,這樣對於“伺服器”來說是不安全的,因為黑客可以傳送一些簡單的有規律的字串給“伺服器”加密,從而尋找加密的規律,有可能威脅到私鑰的安全。所以說,“伺服器”隨隨便便用私鑰去加密一個來路不明的字串並把結果傳送給對方是不安全的。
〖解決方法〗
每次收到“客戶”發來的要加密的的字串時,“伺服器”並不是真正的加密這個字串本身,而是把這個字串進行一個hash計算,加密這個字串的hash值(不加密原來的字串)後傳送給“客戶”,“客戶”收到後解密這個hash值並自己計算字串的hash值然後進行對比是否一致。也就是說,“伺服器”不直接加密收到的字串,而是加密這個字串的一個hash值,這樣就避免了加密那些有規律的字串,從而降低被破解的機率。“客戶”自己傳送的字串,因此它自己可以計算字串的hash值,然後再把“伺服器”傳送過來的加密的hash值和自己計算的進行對比,同樣也能確定對方是否是“伺服器”。
【問題2】
在雙方的通訊過程中,“黑客”可以截獲傳送的加密了的內容,雖然他無法解密這個內容,但是他可以搗亂,例如把資訊原封不動的傳送多次,擾亂通訊過程。
〖解決方法〗
可以給通訊的內容加上一個序號或者一個隨機的值,如果“客戶”或者“伺服器”接收到的資訊中有之前出現過的序號或者隨機值,那麼說明有人在通訊過程中重發資訊內容進行搗亂,雙方會立刻停止通訊。有人可能會問,如果有人一直這麼搗亂怎麼辦?那不是無法通訊了?答案是的確是這樣的,例如有人控制了你連線網際網路的路由器,他的確可以針對你。但是一些重要的應用,例如軍隊或者政府的內部網路,它們都不使用我們平時使用的公網,因此一般人不會破壞到他們的通訊。
【問題3】
在雙方的通訊過程中,“黑客”除了簡單的重複傳送截獲的訊息之外,還可以修改截獲後的密文修改後再發送,因為修改的是密文,雖然不能完全控制訊息解密後的內容,但是仍然會破壞解密後的密文。因此傳送過程如果黑客對密文進行了修改,“客戶”和“伺服器”是無法判斷密文是否被修改的。雖然不一定能達到目的,但是“黑客”可以一直這樣碰碰運氣。
〖解決方法〗
在每次傳送資訊時,先對資訊的內容進行一個hash計算得出一個hash值,將資訊的內容和這個hash值一起加密後傳送。接收方在收到後進行解密得到明文的內容和hash值,然後接收方再自己對收到資訊內容做一次hash計算,與收到的hash值進行對比看是否匹配,如果匹配就說明資訊在傳輸過程中沒有被修改過。如果不匹配說明中途有人故意對加密資料進行了修改,立刻中斷通話過程後做其它處理。