1. 程式人生 > >sklearn —— 標準化、歸一化、正則化

sklearn —— 標準化、歸一化、正則化

一、標準化(Z-Score)

公式為:(X-mean)/std 計算時對每個屬性/每列分別進行。

將資料按期屬性(按列進行)減去其均值,並處以其方差。得到的結果是,對於每個屬性/每列來說所有資料都聚集在0附近,方差為1。

實現時,有兩種不同的方式:

1、使用sklearn.preprocessing.scale()函式,可以直接將給定資料進行標準化

>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1.,  2.
], ... [ 2., 0., 0.], ... [ 0., 1., -1.]]) >>> X_scaled = preprocessing.scale(X) >>> X_scaled array([[ 0. ..., -1.22..., 1.33...], [ 1.22..., 0. ..., -0.26...], [-1.22..., 1.22..., -1.06...]]) >>>#處理後資料的均值和方差
>>> X_scaled.mean(axis=0) array([ 0., 0., 0.]) >>> X_scaled.std(axis=0) array([ 1., 1., 1.])

2、使用sklearn.preprocessing.StandardScaler類,使用該類的好處在於可以儲存訓練集中的引數(均值、方差)直接使用其物件轉換測試集資料。

>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True)

>>> scaler.mean_                                      
array([ 1.
..., 0. ..., 0.33...]) >>> scaler.std_ array([ 0.81..., 0.81..., 1.24...]) >>> scaler.transform(X) array([[ 0. ..., -1.22..., 1.33...], [ 1.22..., 0. ..., -0.26...], [-1.22..., 1.22..., -1.06...]]) >>>#可以直接使用訓練集對測試集資料進行轉換 >>> scaler.transform([[-1., 1., 0.]]) array([[-2.44..., 1.22..., -0.26...]])

二、歸一化(Min-Max Normalization)

除了上述介紹的方法之外,另一種常用的方法歸一化,將屬性縮放到一個指定的最大和最小值(通常是1-0)之間,這可以通過preprocessing.MinMaxScaler類實現。

使用這種方法的目的包括:

1、對於方差非常小的屬性可以增強其穩定性。

2、維持稀疏矩陣中為0的條目。

>>> X_train = np.array([[ 1., -1.,  2.],
...                     [ 2.,  0.,  0.],
...                     [ 0.,  1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5       ,  0.        ,  1.        ],
       [ 1.        ,  0.5       ,  0.33333333],
       [ 0.        ,  1.        ,  0.        ]])

>>> #將相同的縮放應用到測試集資料中
>>> X_test = np.array([[ -3., -1.,  4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5       ,  0.        ,  1.66666667]])


>>> #縮放因子等屬性
>>> min_max_scaler.scale_                             
array([ 0.5       ,  0.5       ,  0.33...])

>>> min_max_scaler.min_                               
array([ 0.        ,  0.5       ,  0.33...])

當然,在構造類物件的時候也可以直接指定最大最小值的範圍:feature_range=(min, max),此時應用的公式變為:

X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))

X_scaled=X_std/(max-min)+min

三、正則化(Normalization)

正則化的過程是將每個樣本縮放到單位範數(每個樣本的範數為1),如果後面要使用如二次型(點積)或者其它核方法計算兩個樣本之間的相似性這個方法會很有用。

Normalization主要思想是對每個樣本計算其p-範數,然後對該樣本中每個元素除以該範數,這樣處理的結果是使得每個處理後樣本的p-範數(l1-norm,l2-norm)等於1。

         p-範數的計算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p

該方法主要應用於文字分類和聚類中。例如,對於兩個TF-IDF向量的l2-norm進行點積,就可以得到這兩個向量的餘弦相似性。

1、可以使用preprocessing.normalize()函式對指定資料進行轉換:

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')

>>> X_normalized                                      
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

2、可以使用processing.Normalizer()類實現對訓練集和測試集的擬合和轉換:

>>> normalizer = preprocessing.Normalizer().fit(X)  # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2')

>>>
>>> normalizer.transform(X)                            
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

>>> normalizer.transform([[-1.,  1., 0.]])             
array([[-0.70...,  0.70...,  0.  ...]])