1. 程式人生 > >ElasticSearch寫入和查詢測試

ElasticSearch寫入和查詢測試

1,ES的儲存結構瞭解

在ES中,儲存結構主要有四種,與傳統的關係型資料庫對比如下:
index(Indices)相當於一個database
type相當於一個table
document相當於一個row
properties(Fields)相當於一個column

Relational DB -> Databases -> Tables -> Rows -> Columns
Elasticsearch -> Indices -> Types -> Documents -> Fields

2,ES寫入測試

寫入一個文件(一條資料)

PUT http://192.168.1.32:9200/twitter/tweet/377827236
{
"tweet_id": "555555555555555555555666",
"user_screen_name": "kanazawa_mj",
"tweet": "blog3444444",
"user_id": "377827236",
"id": 214019
}

我們看到path:/twitter/tweet/377827236包含三部分資訊:

名字 說明
twitter 索引名
tweet 型別名
377827236 這個員工的ID

3,ES查詢測試

查詢一個文件,包含love,返回50條資料,採用展開的json格式

GET http://192.168.1.32:9200/twitter/tweet/_search?q=tweet:love&size=50&pretty=true
{
  "took" : 20,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "failed" : 0
  },
  "hits" : {
    "total" : 11639,
    "max_score"
: 8.448289, "hits" : [ { "_index" : "twitter", "_type" : "tweet", "_id" : "AV0fnFOX6PBTXc6mRjpL", "_score" : 8.448289, "_source" : { "tweet_id" : "843105177913757697", "user_screen_name" : "jessicapalapal", "tweet" : "Love, love, love ", "user_id" : "740434015", "id" : 474551 } }, { "_index" : "twitter", "_type" : "tweet", "_id" : "AV0fni__6PBTXc6mSeyR", "_score" : 8.436986, "_source" : { "tweet_id" : "695096306763583488", "user_screen_name" : "SampsonMariel", "tweet" : "Love love love^_^ #ALDUB29thWeeksary", "user_id" : "2483556636", "id" : 723297 } }, { "_index" : "twitter", "_type" : "tweet", "_id" : "AV0fmxvV6PBTXc6mQ8Mb", "_score" : 8.425938, "_source" : { "tweet_id" : "835676311637086209", "user_screen_name" : "thedaveywavey", "tweet" : "Love is love is love is love. ", "user_id" : "17191297", "id" : 311967 } } ] } }

4,ES批量寫入測試

  • 寫入程式,編寫Python指令碼,生產者和消費者模式,從Mysql資料庫讀取資料,1000條資料寫入一次ES
  • 本機環境,Windows,記憶體佔用100M,CPU佔用15%
  • ES服務,Ubuntu14.04,CPU佔用5%,記憶體較少
  • 單程序,5個寫入執行緒,100萬行資料,500秒
  • 單程序,20個寫入執行緒,100萬行資料,500秒
  • 補充:據說,修改ES配置,先關閉資料索引,可以提高資料寫入速度,尚未測試

5,下一步計劃

  • ES資料分片機制、搜尋引數配置(mapping、filter)等,尚需要根據專案需求,深入學習和測試。
  • ES支援的額外功能,例如時間範圍搜尋、中文簡繁體、拼音搜尋、GIS位置搜尋、英文時態支援等。

6,參考資料

7,附件(Python寫入ES程式碼)

# coding=utf-8
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
import time
import argparse
import sys
reload(sys)
sys.setdefaultencoding('utf-8')

# ES索引和Type名稱
INDEX_NAME = "twitter"
TYPE_NAME = "tweet"

# ES操作工具類
class es_tool():
    # 類初始化函式
    def __init__(self, hosts, timeout):
        self.es = Elasticsearch(hosts, timeout=5000)
        pass

    # 將資料儲存到es中
    def set_data(self, fields_data=[], index_name=INDEX_NAME, doc_type_name=TYPE_NAME):
        # 建立ACTIONS
        ACTIONS = []
        # print "es set_data length",len(fields_data)
        for fields in fields_data:
            # print "fields", fields
            # print fields[1]
            action = {
                "_index": index_name,
                "_type": doc_type_name,
                "_source": {
                    "id": fields[0],
                    "tweet_id": fields[1],
                    "user_id": fields[2],
                    "user_screen_name": fields[3],
                    "tweet": fields[4]
                }
            }
            ACTIONS.append(action)

        # print "len ACTIONS", len(ACTIONS)
        # 批量處理
        success, _ = bulk(self.es, ACTIONS, index=index_name, raise_on_error=True)
        print('Performed %d actions' % success)

# 讀取引數
def read_args():
    parser = argparse.ArgumentParser(description="Search Elastic Engine")
    parser.add_argument("-i", dest="input_file", action="store", help="input file1", required=False, default="./data.txt")
    # parser.add_argument("-o", dest="output_file", action="store", help="output file", required=True)
    return parser.parse_args()

# 初始化es,設定mapping
def init_es(hosts=[], timeout=5000, index_name=INDEX_NAME, doc_type_name=TYPE_NAME):
    es = Elasticsearch(hosts, timeout=5000)
    my_mapping = {
        TYPE_NAME: {
            "properties": {
                "id": {
                    "type": "string"
                },
                "tweet_id": {
                    "type": "string"
                },
                "user_id": {
                    "type": "string"
                },
                "user_screen_name": {
                    "type": "string"
                },
                "tweet": {
                    "type": "string"
                }
            }
        }
    }
    try:
        # 先銷燬,後建立Index和mapping
        delete_index = es.indices.delete(index=index_name)  # {u'acknowledged': True}
        create_index = es.indices.create(index=index_name)  # {u'acknowledged': True}
        mapping_index = es.indices.put_mapping(index=index_name, doc_type=doc_type_name,
                                                    body=my_mapping)  # {u'acknowledged': True}
        if delete_index["acknowledged"] != True or create_index["acknowledged"] != True or mapping_index["acknowledged"] != True:
            print "Index creation failed..."
    except Exception, e:
        print "set_mapping except", e

# 主函式
if __name__ == '__main__':
    # args = read_args()
    # 初始化es環境
    init_es(hosts=["192.168.1.32:9200"], timeout=5000)
    # 建立es類
    es = es_tool(hosts=["192.168.1.32:9200"], timeout=5000)
    # 執行寫入操作
    tweet_list = [("111","222","333","444","555"), ("11","22","33","44","55")]
    es.set_data(tweet_list)