ML之RS:基於使用者的CF+LFM實現的推薦系統(基於相關度較高的使用者實現電影推薦)
阿新 • • 發佈:2019-02-16
#ML之RS:基於CF和LFM實現的推薦系統 import numpy as np import pandas as pd import matplotlib.pyplot as plt import time import warnings warnings.filterwarnings('ignore') np.random.seed(1) plt.style.use('ggplot') # data = pd.read_csv('ml-20m/ratings_smaller.csv', index_col=0) # movies = pd.read_csv('ml-20m/movies_smaller.csv') #1、匯入資料集 data = pd.read_csv('ml-latest-small/ratings.csv') movies = pd.read_csv('ml-latest-small/movies.csv') movies = movies.set_index('movieId')[['title', 'genres']] #2、觀察資料集 # How many users? print (data.userId.nunique(), 'users') # How many movies? print (data.movieId.nunique(), 'movies') # How possible ratings? print (data.userId.nunique() * data.movieId.nunique(), 'possible ratings') # How many do we have? print (len(data), 'ratings') print (100 * (float(len(data)) / (data.userId.nunique() * data.movieId.nunique())), '% of possible ratings') # Number of ratings per users fig = plt.figure(figsize=(10, 10)) ax = plt.hist(data.groupby('userId').apply(lambda x: len(x)).values, bins=50) plt.xlabel("ratings") plt.ylabel("users") plt.title("Number of ratings per user") plt.show() # Number of ratings per movie fig = plt.figure(figsize=(10, 10)) ax = plt.hist(data.groupby('movieId').apply(lambda x: len(x)).values, bins=50) plt.xlabel("ratings") plt.ylabel("movies") plt.title('Number of ratings per movie') plt.show() # Ratings distribution評分分佈 fig = plt.figure(figsize=(10, 10)) ax = plt.hist(data.rating.values, bins=5) plt.xlabel("ratings") plt.ylabel("numbers") plt.title("Distribution of ratings") plt.show() # Average rating per user fig = plt.figure(figsize=(10, 10)) ax = plt.hist(data.groupby('userId').rating.mean().values, bins=10) plt.xlabel("Average rating") plt.ylabel("numbers") plt.title("Average rating per user") plt.show() # Average rating per movie fig = plt.figure(figsize=(10, 10)) ax = plt.hist(data.groupby('movieId').rating.mean().values, bins=10) plt.title('Average rating per movie') plt.show() # Top Movies,genres電影型別 average_movie_rating = data.groupby('movieId').mean() top_movies = average_movie_rating.sort_values('rating', ascending=False).head(10) pd.concat([movies.loc[top_movies.index.values], average_movie_rating.loc[top_movies.index.values].rating], axis=1) # Robust Top Movies - Lets weight the average rating by the square root of number of ratings讓平均評分進行加權數的平方根 top_movies = data.groupby('movieId').apply(lambda x:len(x)**0.5 * x.mean()).sort_values('rating', ascending=False).head(10) pd.concat([movies.loc[top_movies.index.values], average_movie_rating.loc[top_movies.index.values].rating], axis=1) controversial_movies = data.groupby('movieId').apply(lambda x:len(x)**0.25 * x.std()).sort_values('rating', ascending=False).head(10) pd.concat([movies.loc[controversial_movies.index.values], average_movie_rating.loc[controversial_movies.index.values].rating], axis=1)
相關文章推薦
GitHub