python實現二維函式高次擬合
阿新 • • 發佈:2019-02-16
在參加“資料探勘”比賽中遇到了關於函式高次擬合的問題,然後就整理了一下原始碼,以便後期的學習與改進。
在本次“資料探勘”比賽中感覺收穫最大的還是對於神經網路的認識,在接近一週的時間裡,研究了進40種神經網路模型,雖然在持續一週的挖掘比賽把自己折磨的慘不忍睹,但是收穫頗豐。現在想想也挺欣慰自己在這段時間裡接受新知識的能力。關於神經網路方面的理解會在後續博文中補充(剛提交完論文,還沒來得及整理),先分享一下高次擬合方面的知識。
# coding=utf-8
import matplotlib.pyplot as plt
import numpy as np
import scipy as sp
import csv
from scipy.stats import norm
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model
''''' 資料匯入 '''
def loadDataSet(fileName):
dataMat = []
labelMat = []
csvfile = file(fileName, 'rb' )
reader = csv.reader(csvfile)
b = 0
for line in reader:
if line[50] is '':
b += 1
else:
dataMat.append(float(line[41])/100*20+30)
labelMat.append(float(line[25])*100)
csvfile.close()
print "absence time number: %d" % b
return dataMat,labelMat
xArr,yArr = loadDataSet('data.csv' )
x = np.array(xArr)
y = np.array(yArr)
# x = np.arange(0, 1, 0.002)
# y = norm.rvs(0, size=500, scale=0.1)
# y = y + x ** 2
def rmse(y_test, y):
return sp.sqrt(sp.mean((y_test - y) ** 2))
def R2(y_test, y_true):
return 1 - ((y_test - y_true) ** 2).sum() / ((y_true - y_true.mean()) ** 2).sum()
def R22(y_test, y_true):
y_mean = np.array(y_true)
y_mean[:] = y_mean.mean()
return 1 - rmse(y_test, y_true) / rmse(y_mean, y_true)
plt.scatter(x, y, s=5)
#分別進行1,2,3,6次擬合
degree = [1, 2,3, 6]
y_test = []
y_test = np.array(y_test)
for d in degree:
#普通
# clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
# ('linear', LinearRegression(fit_intercept=False))])
# clf.fit(x[:, np.newaxis], y)
# 嶺迴歸
clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
('linear', linear_model.Ridge())])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis])
print('多項式引數%s' %clf.named_steps['linear'].coef_)
print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f' %
(rmse(y_test, y),
R2(y_test, y),
R22(y_test, y),
clf.score(x[:, np.newaxis], y)))
plt.plot(x, y_test, linewidth=2)
plt.grid()
plt.legend(['1', '2','3', '6'], loc='upper left')
plt.show()