分散式程序BaseManager(multiprocessing.managers)
阿新 • • 發佈:2019-02-16
命令列執行:
#task_master.py import random,time,queue from multiprocessing.managers import BaseManager task_queue = queue.Queue() result_queue = queue.Queue() class QueueManager(BaseManager): pass def task_q(): return task_queue def result_q(): return result_queue print('master start.') QueueManager.register('get_task_queue',callable=task_q) QueueManager.register('get_result_queue',callable=result_q) manager = QueueManager(address=('127.0.0.1',5000),authkey=b'abc') manager.start() task = manager.get_task_queue() result = manager.get_result_queue() for i in range(10): n = random.randint(0,10000) print('put task %d...' % n) task.put(n) print('try get results...') for i in range(10): r = result.get(timeout=100) print('Result: %s' % r) manager.shutdown() print('master exit.')
得到:
在命令列執行:master start. master start. Traceback (most recent call last): File "<string>", line 1, in <module> File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 106, in spawn_main exitcode = _main(fd) File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 115, in _main prepare(preparation_data) File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 226, in prepare _fixup_main_from_path(data['init_main_from_path']) File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 278, in _fixup_main_from_path run_name="__mp_main__") File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\runpy.py", line 254, in run_path pkg_name=pkg_name, script_name=fname) File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\runpy.py", line 96, in _run_module_code mod_name, mod_spec, pkg_name, script_name) File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "D:\4視訊教程\PythonExercise Files\task_master.py", line 22, in <module> manager.start() File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\managers.py", line 479, in start self._process.start() File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\process.py", line 105, in start self._popen = self._Popen(self) File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\context.py", line 313, in _Popen return Popen(process_obj) File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\popen_spawn_win32.py", line 34, in __init__ prep_data = spawn.get_preparation_data(process_obj._name) File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 144, in get_preparation_data _check_not_importing_main() File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 137, in _check_not_importing_main is not going to be frozen to produce an executable.''') RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable.
#task_master.py import random,time,queue from multiprocessing.managers import BaseManager task_queue = queue.Queue() result_queue = queue.Queue() class QueueManager(BaseManager): pass ##def task_q(): ## return task_queue ##def result_q(): ## return result_queue if __name__ == '__main__': print('master start.') QueueManager.register('get_task_queue',callable= lambda: task_queue) QueueManager.register('get_result_queue',callable= lambda: result_queue) manager = QueueManager(address=('127.0.0.1',5000),authkey=b'abc') manager.start() task = manager.get_task_queue() result = manager.get_result_queue() for i in range(10): n = random.randint(0,10000) print('put task %d...' % n) task.put(n) print('try get results...') for i in range(10): r = result.get(timeout=100) print('Result: %s' % r) manager.shutdown() print('master exit.')
得到:
master start.
Traceback (most recent call last):
File "task_master.py", line 22, in <module>
manager.start()
File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35
-32\lib\multiprocessing\managers.py", line 479, in start
self._process.start()
File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35
-32\lib\multiprocessing\process.py", line 105, in start
self._popen = self._Popen(self)
File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35
-32\lib\multiprocessing\context.py", line 313, in _Popen
return Popen(process_obj)
File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35
-32\lib\multiprocessing\popen_spawn_win32.py", line 66, in
__init__
reduction.dump(process_obj, to_child)
File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35
-32\lib\multiprocessing\reduction.py", line 59, in dump
ForkingPickler(file, protocol).dump(obj)
_pickle.PicklingError: Can't pickle <function <lambda> at
0x005656F0>: attribute lookup <lambda> on __main__ failed
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35
-32\lib\multiprocessing\spawn.py", line 100, in spawn_main
new_handle = steal_handle(parent_pid, pipe_handle)
File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35
-32\lib\multiprocessing\reduction.py", line 81, in steal_handle
_winapi.PROCESS_DUP_HANDLE, False, source_pid)
OSError: [WinError 87] 引數錯誤。
但是,以下程式碼可以正常執行:
#task_master.py
import random,time,queue
from multiprocessing.managers import BaseManager
task_queue = queue.Queue()
result_queue = queue.Queue()
class QueueManager(BaseManager):
pass
def task_q():
return task_queue
def result_q():
return result_queue
if __name__ == '__main__':
print('master start.')
QueueManager.register('get_task_queue',callable= task_q)
QueueManager.register('get_result_queue',callable= result_q)
manager = QueueManager(address=('127.0.0.1',5000),authkey=b'abc')
manager.start()
task = manager.get_task_queue()
result = manager.get_result_queue()
for i in range(10):
n = random.randint(0,10000)
print('put task %d...' % n)
task.put(n)
print('try get results...')
for i in range(10):
r = result.get(timeout=100)
print('Result: %s' % r)
manager.shutdown()
print('master exit.')
#task_worker.py
import sys, time, queue
from multiprocessing.managers import BaseManager
class QueueManager(BaseManager):
pass
QueueManager.register('get_task_queue')
QueueManager.register('get_result_queue')
server_addr = '127.0.0.1'
print('Connect to server %s...' % server_addr)
m = QueueManager(address=(server_addr, 5000), authkey=b'abc')
m.connect()
task = m.get_task_queue()
result = m.get_result_queue()
for i in range(10):
try:
n = task.get(timeout = 1)
print('run task %d * %d' % (n, n))
r = '%d * %d = %d' % (n, n, n*n)
time.sleep(1)
result.put(r)
except Queue.Empty:
print('task queque is empty')
print('worker exit')