企鵝菜鳥的成長過程
阿新 • • 發佈:2019-02-17
牛頓迭代法(Newton's method)又稱為牛頓-拉夫遜(拉弗森)方法(Newton-Raphson method),它是牛頓在17世紀提出的一種在實數域和複數域上近似求解方程的方法。多數方程不存在求根公式,因此求精確根非常困難,甚至不可能,從而尋找方程的近似根就顯得特別重要。方法使用函式f(x)的泰勒級數的前面幾項來尋找方程f(x)
= 0的根。牛頓迭代法是求方程根的重要方法之一,其最大優點是在方程f(x) = 0的單根附近具有平方收斂,而且該法還可以用來求方程的重根、復根,此時線性收斂,但是可通過一些方法變成超線性收斂。另外該方法廣泛用於計算機程式設計中。
設r是 的根,選取 作為r的初始近似值,過點
做曲線
的切線L,L的方程為
,求出L與x軸交點的橫座標
,稱x1為r的一次近似值。過點
做曲線
的切線,並求該切線與x軸交點的橫座標
,稱
為r的二次近似值。重複以上過程,得r的近似值序列,其中,
稱為r的
次近似值,上式稱為牛頓迭代公式。
用牛頓迭代法解非線性方程,是把非線性方程
線性化的一種近似方法。把
在點
的某鄰域內展開成泰勒級數
,取其線性部分(即泰勒展開的前兩項),並令其等於0,即
,以此作為非線性方程
的近似方程,若
,則其解為
, 這樣,得到牛頓迭代法的一個迭代關係式:
。
已經證明,如果是連續的,並且待求的零點是孤立的,那麼在零點周圍存在一個區域,只要初始值位於這個鄰近區域內,那麼牛頓法必定收斂。 並且,如果不為0, 那麼牛頓法將具有平方收斂的效能. 粗略的說,這意味著每迭代一次,牛頓法結果的有效數字將增加一倍。[1]
軍人在進攻時常採用交替掩護進攻的方式,若在數軸上的點表示A,B兩人的位置,規定在前面的數大於後面的數,則是A>B,B>A交替出現。但現在假設軍中有一個膽小鬼,同時大家又都很照顧他,每次衝鋒都是讓他跟在後面,每當前面的人佔據一個新的位置,就把位置交給他,然後其他人再往前佔領新的位置。也就是A始終在B的前面,A向前邁進,B跟上,A把自己的位置交給B(即執行B
= A),然後A 再前進佔領新的位置,B再跟上,直到佔領所有的陣地,前進結束。像這種兩個數一前一後逐步向某個位置逼近的方法稱為迭代法。
迭代法也稱輾轉法,是一種不斷用變數的舊值遞推新值的過程,跟迭代法相對應的是直接法(或者稱為一次解法),即一次性解決問題。迭代演算法是用計算機解決問題的一種基本方法。它利用計算機運算速度快、適合做重複性操作的特點,讓計算機對一組指令(或一定步驟)重複執行,在每次執行這組指令(或這些步驟)時,都從變數的原值推出它的一個新值。
利用迭代演算法解決問題,需要做好以下三個方面的工作:
一、確定迭代變數
在可以用迭代演算法解決的問題中,至少存在一個可直接或間接地不斷由舊值遞推出新值的變數,這個變數就是迭代變數。
二、建立迭代關係式 所謂迭代關係式,指如何從變數的前一個值推出其下一個值的公式(或關係)。迭代關係式的建立是解決迭代問題的關鍵,通常可以使用遞推或倒推的方法來完成。
三、對迭代過程進行控制 在什麼時候結束迭代過程?這是編寫迭代程式必須考慮的問題。不能讓迭代過程無休止地執行下去。迭代過程的控制通常可分為兩種情況:一種是所需的迭代次數是個確定的值,可以計算出來;另一種是所需的迭代次數無法確定。對於前一種情況,可以構建一個固定次數的迴圈來實現對迭代過程的控制;對於後一種情況,需要進一步分析得出可用來結束迭代過程的條件。
設r是 的根,選取 作為r的初始近似值,過點
二、建立迭代關係式 所謂迭代關係式,指如何從變數的前一個值推出其下一個值的公式(或關係)。迭代關係式的建立是解決迭代問題的關鍵,通常可以使用遞推或倒推的方法來完成。
三、對迭代過程進行控制 在什麼時候結束迭代過程?這是編寫迭代程式必須考慮的問題。不能讓迭代過程無休止地執行下去。迭代過程的控制通常可分為兩種情況:一種是所需的迭代次數是個確定的值,可以計算出來;另一種是所需的迭代次數無法確定。對於前一種情況,可以構建一個固定次數的迴圈來實現對迭代過程的控制;對於後一種情況,需要進一步分析得出可用來結束迭代過程的條件。