深度學習框架Tensorflow學習與應用 第2課
阿新 • • 發佈:2019-02-17
2-1:非線性迴歸
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #使用numpy生成200個隨機點,[:,np.newaxis]增加一個維度 x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis] noise = np.random.normal(0,0.02,x_data.shape) y_data = np.square(x_data) + noise #定義兩個placeholder x = tf.placeholder(tf.float32,[None,1]) y = tf.placeholder(tf.float32,[None,1]) #定義神經網路中間層 Weights_L1 = tf.Variable(tf.random_normal([1,10])) biases_L1 = tf.Variable(tf.zeros([1,10])) Wx_plus_b_L1 = tf.matmul(x,Weights_L1) + biases_L1 L1 = tf.nn.tanh(Wx_plus_b_L1) #定義神經網路輸出層 Weights_L2 = tf.Variable(tf.random_normal([10,1])) biases_L2 = tf.Variable(tf.zeros([1,1])) Wx_plus_b_L2 = tf.matmul(L1,Weights_L2) + biases_L2 prediction = tf.nn.tanh(Wx_plus_b_L2) #二次代價函式 loss = tf.reduce_mean(tf.square(y-prediction)) #使用梯度下降法訓練 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) with tf.Session() as sess: #變數初始化 sess.run(tf.global_variables_initializer()) for _ in range(2000): sess.run(train_step,feed_dict={x:x_data,y:y_data}) #獲得預測值 prediction_value = sess.run(prediction,feed_dict={x:x_data}) #畫圖 plt.figure() plt.scatter(x_data,y_data) plt.plot(x_data,prediction_value,'r-',lw=5) plt.show()
2-2:MNIST資料集分類簡單版本
MNIST資料集介紹:
60000行的訓練資料集(mnist.train)
10000行測試資料集(mnist.test)
每張圖片包含28*28個畫素
MNIST資料集的標籤是介於0-9的數字
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf #載入資料集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每個批次的大小 batch_size = 100 #計算一共有多少個批次 n_batch = mnist.train.num_examples//batch_size #定義兩個placeholder x = tf.placeholder(tf.float32,[None, 784]) y = tf.placeholder(tf.float32,[None,10]) #建立一個簡單的神經網路 W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) predicton = tf.nn.softmax(tf.matmul(x,W)+b) #二次代價函式 loss = tf.reduce_mean(tf.square(y-predicton)) #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化變數 init = tf.global_variables_initializer() #結果存放在一個布林型列表中 #tf.argmax(input, axis=None, name=None, dimension=None)此函式是對矩陣按行或列計算最大值 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(predicton,1)) #求準確率 #tf.cast(x, dtype, name=None) ,把x轉化為dtype型 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess: sess.run(init) for epoch in range(21):#訓練21次 for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print("Iter "+str(epoch)+"Test Accuracy " + str(acc))
輸出: