四叉樹空間索引原理及其實現
今天依然在放假中,在此將以前在學校寫的四叉樹的東西拿出來和大家分享。
四叉樹索引的基本思想是將地理空間遞迴劃分為不同層次的樹結構。它將已知範圍的空間等分成四個相等的子空間,如此遞迴下去,直至樹的層次達到一定深度或者滿足某種要求後停止分割。四叉樹的結構比較簡單,並且當空間資料物件分佈比較均勻時,具有比較高的空間資料插入和查詢效率,因此四叉樹是GIS中常用的空間索引之一。常規四叉樹的結構如圖所示,地理空間物件都儲存在葉子節點上,中間節點以及根節點不儲存地理空間物件。
四叉樹示意圖
四叉樹對於區域查詢,效率比較高。但如果空間物件分佈不均勻,隨著地理空間物件的不斷插入,四叉樹的層次會不斷地加深,將形成一棵嚴重不平衡的四叉樹,那麼每次查詢的深度將大大的增多,從而導致查詢效率的急劇下降。
本節將介紹一種改進的四叉樹索引結構。四叉樹結構是自頂向下逐步劃分的一種樹狀的層次結構。傳統的四叉樹索引存在著以下幾個缺點:
(1)空間實體只能儲存在葉子節點中,中間節點以及根節點不能儲存空間實體資訊,隨著空間物件的不斷插入,最終會導致四叉樹樹的層次比較深,在進行空間資料視窗查詢的時候效率會比較低下。
(2)同一個地理實體在四叉樹的分裂過程中極有可能儲存在多個節點中,這樣就導致了索引儲存空間的浪費。
(3)由於地理空間物件可能分佈不均衡,這樣會導致常規四叉樹生成一棵極為不平衡的樹,這樣也會造成樹結構的不平衡以及儲存空間的浪費。
相應的改進方法,將地理實體資訊儲存在完全包含它的最小矩形節點中,不儲存在它的父節點中,每個地理實體只在樹中儲存一次,避免儲存空間的浪費。首先生成滿四叉樹,避免在地理實體插入時需要重新分配記憶體,加快插入的速度,最後將空的節點所佔記憶體空間釋放掉。改進後的四叉樹結構如下圖所示。四叉樹的深度一般取經驗值
圖改進的四叉樹結構
為了維護空間索引與對儲存在檔案或資料庫中的空間資料的一致性,作者設計瞭如下的資料結構支援四叉樹的操作。
(1)四分割槽域標識
分別定義了一個平面區域的四個子區域索引號,右上為第一象限0,左上為第二象限1,左下為第三象限2,右下為第四象限3。
typedef enum
{
UR = 0,// UR第一象限
UL = 1,// UL為第二象限
LL = 2,// LL為第三象限
LR = 3// LR為第四象限
}QuadrantEnum;
(2)空間物件資料結構
空間物件資料結構是對地理空間物件的近似,在空間索引中,相當一部分都是採用MBR作為近似。
/*空間物件MBR資訊*/
typedef struct SHPMBRInfo
{
int nID;//空間物件ID號
MapRect Box;//空間物件MBR範圍座標
}SHPMBRInfo;
nID是空間物件的標識號,Box是空間物件的最小外包矩形(MBR)。
(3)四叉樹節點資料結構
四叉樹節點是四叉樹結構的主要組成部分,主要用於儲存空間物件的標識號和MBR,也是四叉樹演算法操作的主要部分。
/*四叉樹節點型別結構*/
typedef struct QuadNode
{
MapRectBox;//節點所代表的矩形區域
intnShpCount;//節點所包含的所有空間物件個數
SHPMBRInfo* pShapeObj;//空間物件指標陣列
intnChildCount;//子節點個數
QuadNode*children[4];//指向節點的四個孩子
}QuadNode;
Box是代表四叉樹對應區域的最小外包矩形,上一層的節點的最小外包矩形包含下一層最小外包矩形區域;nShpCount代表本節點包含的空間物件的個數;pShapeObj代表指向空間物件儲存地址的首地址,同一個節點的空間物件在記憶體中連續儲存;nChildCount代表節點擁有的子節點的數目;children是指向孩子節點指標的陣列。
上述理論部分都都講的差不多了,下面就貼上我的C語言實現版本程式碼。
標頭檔案如下:
#ifndef __QUADTREE_H_59CAE94A_E937_42AD_AA27_794E467715BB__
#define __QUADTREE_H_59CAE94A_E937_42AD_AA27_794E467715BB__
/* 一個矩形區域的象限劃分::
UL(1) | UR(0)
----------|-----------
LL(2) | LR(3)
以下對該象限型別的列舉
*/
typedef enum
{
UR = 0,
UL = 1,
LL = 2,
LR = 3
}QuadrantEnum;
/*空間物件MBR資訊*/
typedef struct SHPMBRInfo
{
int nID; //空間物件ID號
MapRect Box; //空間物件MBR範圍座標
}SHPMBRInfo;
/* 四叉樹節點型別結構 */
typedef struct QuadNode
{
MapRect Box; //節點所代表的矩形區域
int nShpCount; //節點所包含的所有空間物件個數
SHPMBRInfo* pShapeObj; //空間物件指標陣列
int nChildCount; //子節點個數
QuadNode *children[4]; //指向節點的四個孩子
}QuadNode;
/* 四叉樹型別結構 */
typedef struct quadtree_t
{
QuadNode *root;
int depth; // 四叉樹的深度
}QuadTree;
//初始化四叉樹節點
QuadNode *InitQuadNode();
//層次建立四叉樹方法(滿四叉樹)
void CreateQuadTree(int depth,GeoLayer *poLayer,QuadTree* pQuadTree);
//建立各個分支
void CreateQuadBranch(int depth,MapRect &rect,QuadNode** node);
//構建四叉樹空間索引
void BuildQuadTree(GeoLayer*poLayer,QuadTree* pQuadTree);
//四叉樹索引查詢(矩形查詢)
void SearchQuadTree(QuadNode* node,MapRect &queryRect,vector<int>& ItemSearched);
//四叉樹索引查詢(矩形查詢)並行查詢
void SearchQuadTreePara(vector<QuadNode*> resNodes,MapRect &queryRect,vector<int>& ItemSearched);
//四叉樹的查詢(點查詢)
void PtSearchQTree(QuadNode* node,double cx,double cy,vector<int>& ItemSearched);
//將指定的空間物件插入到四叉樹中
void Insert(long key,MapRect &itemRect,QuadNode* pNode);
//將指定的空間物件插入到四叉樹中
void InsertQuad(long key,MapRect &itemRect,QuadNode* pNode);
//將指定的空間物件插入到四叉樹中
void InsertQuad2(long key,MapRect &itemRect,QuadNode* pNode);
//判斷一個節點是否是葉子節點
bool IsQuadLeaf(QuadNode* node);
//刪除多餘的節點
bool DelFalseNode(QuadNode* node);
//四叉樹遍歷(所有要素)
void TraversalQuadTree(QuadNode* quadTree,vector<int>& resVec);
//四叉樹遍歷(所有節點)
void TraversalQuadTree(QuadNode* quadTree,vector<QuadNode*>& arrNode);
//釋放樹的記憶體空間
void ReleaseQuadTree(QuadNode** quadTree);
//計算四叉樹所佔的位元組的大小
long CalByteQuadTree(QuadNode* quadTree,long& nSize);
#endif
原始檔如下:
#include "QuadTree.h"
QuadNode *InitQuadNode()
{
QuadNode *node = new QuadNode;
node->Box.maxX = 0;
node->Box.maxY = 0;
node->Box.minX = 0;
node->Box.minY = 0;
for (int i = 0; i < 4; i ++)
{
node->children[i] = NULL;
}
node->nChildCount = 0;
node->nShpCount = 0;
node->pShapeObj = NULL;
return node;
}
void CreateQuadTree(int depth,GeoLayer *poLayer,QuadTree* pQuadTree)
{
pQuadTree->depth = depth;
GeoEnvelope env; //整個圖層的MBR
poLayer->GetExtent(&env);
MapRect rect;
rect.minX = env.MinX;
rect.minY = env.MinY;
rect.maxX = env.MaxX;
rect.maxY = env.MaxY;
//建立各個分支
CreateQuadBranch(depth,rect,&(pQuadTree->root));
int nCount = poLayer->GetFeatureCount();
GeoFeature **pFeatureClass = new GeoFeature*[nCount];
for (int i = 0; i < poLayer->GetFeatureCount(); i ++)
{
pFeatureClass[i] = poLayer->GetFeature(i);
}
//插入各個要素
GeoEnvelope envObj; //空間物件的MBR
//#pragma omp parallel for
for (int i = 0; i < nCount; i ++)
{
pFeatureClass[i]->GetGeometry()->getEnvelope(&envObj);
rect.minX = envObj.MinX;
rect.minY = envObj.MinY;
rect.maxX = envObj.MaxX;
rect.maxY = envObj.MaxY;
InsertQuad(i,rect,pQuadTree->root);
}
//DelFalseNode(pQuadTree->root);
}
void CreateQuadBranch(int depth,MapRect &rect,QuadNode** node)
{
if (depth != 0)
{
*node = InitQuadNode(); //建立樹根
QuadNode *pNode = *node;
pNode->Box = rect;
pNode->nChildCount = 4;
MapRect boxs[4];
pNode->Box.Split(boxs,boxs+1,boxs+2,boxs+3);
for (int i = 0; i < 4; i ++)
{
//建立四個節點並插入相應的MBR
pNode->children[i] = InitQuadNode();
pNode->children[i]->Box = boxs[i];
CreateQuadBranch(depth-1,boxs[i],&(pNode->children[i]));
}
}
}
void BuildQuadTree(GeoLayer *poLayer,QuadTree* pQuadTree)
{
assert(poLayer);
GeoEnvelope env; //整個圖層的MBR
poLayer->GetExtent(&env);
pQuadTree->root = InitQuadNode();
QuadNode* rootNode = pQuadTree->root;
rootNode->Box.minX = env.MinX;
rootNode->Box.minY = env.MinY;
rootNode->Box.maxX = env.MaxX;
rootNode->Box.maxY = env.MaxY;
//設定樹的深度( 根據等比數列的求和公式)
//pQuadTree->depth = log(poLayer->GetFeatureCount()*3/8.0+1)/log(4.0);
int nCount = poLayer->GetFeatureCount();
MapRect rect;
GeoEnvelope envObj; //空間物件的MBR
for (int i = 0; i < nCount; i ++)
{
poLayer->GetFeature(i)->GetGeometry()->getEnvelope(&envObj);
rect.minX = envObj.MinX;
rect.minY = envObj.MinY;
rect.maxX = envObj.MaxX;
rect.maxY = envObj.MaxY;
InsertQuad2(i,rect,rootNode);
}
DelFalseNode(pQuadTree->root);
}
void SearchQuadTree(QuadNode* node,MapRect &queryRect,vector<int>& ItemSearched)
{
assert(node);
//int coreNum = omp_get_num_procs();
//vector<int> * pResArr = new vector<int>[coreNum];
if (NULL != node)
{
for (int i = 0; i < node->nShpCount; i ++)
{
if (queryRect.Contains(node->pShapeObj[i].Box)
|| queryRect.Intersects(node->pShapeObj[i].Box))
{
ItemSearched.push_back(node->pShapeObj[i].nID);
}
}
//並行搜尋四個孩子節點
/*#pragma omp parallel sections
{
#pragma omp section
if ((node->children[0] != NULL) &&
(node->children[0]->Box.Contains(queryRect)
|| node->children[0]->Box.Intersects(queryRect)))
{
int tid = omp_get_thread_num();
SearchQuadTree(node->children[0],queryRect,pResArr[tid]);
}
#pragma omp section
if ((node->children[1] != NULL) &&
(node->children[1]->Box.Contains(queryRect)
|| node->children[1]->Box.Intersects(queryRect)))
{
int tid = omp_get_thread_num();
SearchQuadTree(node->children[1],queryRect,pResArr[tid]);
}
#pragma omp section
if ((node->children[2] != NULL) &&
(node->children[2]->Box.Contains(queryRect)
|| node->children[2]->Box.Intersects(queryRect)))
{
int tid = omp_get_thread_num();
SearchQuadTree(node->children[2],queryRect,pResArr[tid]);
}
#pragma omp section
if ((node->children[3] != NULL) &&
(node->children[3]->Box.Contains(queryRect)
|| node->children[3]->Box.Intersects(queryRect)))
{
int tid = omp_get_thread_num();
SearchQuadTree(node->children[3],queryRect,pResArr[tid]);
}
}*/
for (int i = 0; i < 4; i ++)
{
if ((node->children[i] != NULL) &&
(node->children[i]->Box.Contains(queryRect)
|| node->children[i]->Box.Intersects(queryRect)))
{
SearchQuadTree(node->children[i],queryRect,ItemSearched);
//node = node->children[i]; //非遞迴
}
}
}
/*for (int i = 0 ; i < coreNum; i ++)
{
ItemSearched.insert(ItemSearched.end(),pResArr[i].begin(),pResArr[i].end());
}*/
}
void SearchQuadTreePara(vector<QuadNode*> resNodes,MapRect &queryRect,vector<int>& ItemSearched)
{
int coreNum = omp_get_num_procs();
omp_set_num_threads(coreNum);
vector<int>* searchArrs = new vector<int>[coreNum];
for (int i = 0; i < coreNum; i ++)
{
searchArrs[i].clear();
}
#pragma omp parallel for
for (int i = 0; i < resNodes.size(); i ++)
{
int tid = omp_get_thread_num();
for (int j = 0; j < resNodes[i]->nShpCount; j ++)
{
if (queryRect.Contains(resNodes[i]->pShapeObj[j].Box)
|| queryRect.Intersects(resNodes[i]->pShapeObj[j].Box))
{
searchArrs[tid].push_back(resNodes[i]->pShapeObj[j].nID);
}
}
}
for (int i = 0; i < coreNum; i ++)
{
ItemSearched.insert(ItemSearched.end(),
searchArrs[i].begin(),searchArrs[i].end());
}
delete [] searchArrs;
searchArrs = NULL;
}
void PtSearchQTree(QuadNode* node,double cx,double cy,vector<int>& ItemSearched)
{
assert(node);
if (node->nShpCount >0) //節點
{
for (int i = 0; i < node->nShpCount; i ++)
{
if (node->pShapeObj[i].Box.IsPointInRect(cx,cy))
{
ItemSearched.push_back(node->pShapeObj[i].nID);
}
}
}
else if (node->nChildCount >0) //節點
{
for (int i = 0; i < 4; i ++)
{
if (node->children[i]->Box.IsPointInRect(cx,cy))
{
PtSearchQTree(node->children[i],cx,cy,ItemSearched);
}
}
}
//找出重複元素的位置
sort(ItemSearched.begin(),ItemSearched.end()); //先排序,預設升序
vector<int>::iterator unique_iter =
unique(ItemSearched.begin(),ItemSearched.end());
ItemSearched.erase(unique_iter,ItemSearched.end());
}
void Insert(long key, MapRect &itemRect,QuadNode* pNode)
{
QuadNode *node = pNode; //保留根節點副本
SHPMBRInfo pShpInfo;
//節點有孩子
if (0 < node->nChildCount)
{
for (int i = 0; i < 4; i ++)
{
//如果包含或相交,則將節點插入到此節點
if (node->children[i]->Box.Contains(itemRect)
|| node->children[i]->Box.Intersects(itemRect))
{
//node = node->children[i];
Insert(key,itemRect,node->children[i]);
}
}
}
//如果當前節點存在一個子節點時
else if (1 == node->nShpCount)
{
MapRect boxs[4];
node->Box.Split(boxs,boxs+1,boxs+2,boxs+3);
//建立四個節點並插入相應的MBR
node->children[UR] = InitQuadNode();
node->children[UL] = InitQuadNode();
node->children[LL] = InitQuadNode();
node->children[LR] = InitQuadNode();
node->children[UR]->Box = boxs[0];
node->children[UL]->Box = boxs[1];
node->children[LL]->Box = boxs[2];
node->children[LR]->Box = boxs[3];
node->nChildCount = 4;
for (int i = 0; i < 4; i ++)
{
//將當前節點中的要素移動到相應的子節點中
for (int j = 0; j < node->nShpCount; j ++)
{
if (node->children[i]->Box.Contains(node->pShapeObj[j].Box)
|| node->children[i]->Box.Intersects(node->pShapeObj[j].Box))
{
node->children[i]->nShpCount += 1;
node->children[i]->pShapeObj =
(SHPMBRInfo*)malloc(node->children[i]->nShpCount*sizeof(SHPMBRInfo));
memcpy(node->children[i]->pShapeObj,&(node->pShapeObj[j]),sizeof(SHPMBRInfo));
free(node->pShapeObj);
node->pShapeObj = NULL;
node->nShpCount = 0;
}
}
}
for (int i = 0; i < 4; i ++)
{
//如果包含或相交,則將節點插入到此節點
if (node->children[i]->Box.Contains(itemRect)
|| node->children[i]->Box.Intersects(itemRect))
{
if (node->children[i]->nShpCount == 0) //如果之前沒有節點
{
node->children[i]->nShpCount += 1;
node->pShapeObj =
(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->children[i]->nShpCount);
}
else if (node->children[i]->nShpCount > 0)
{
node->children[i]->nShpCount += 1;
node->children[i]->pShapeObj =
(SHPMBRInfo *)realloc(node->children[i]->pShapeObj,
sizeof(SHPMBRInfo)*node->children[i]->nShpCount);
}
pShpInfo.Box = itemRect;
pShpInfo.nID = key;
memcpy(node->children[i]->pShapeObj,
&pShpInfo,sizeof(SHPMBRInfo));
}
}
}
//當前節點沒有空間物件
else if (0 == node->nShpCount)
{
node->nShpCount += 1;
node->pShapeObj =
(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->nShpCount);
pShpInfo.Box = itemRect;
pShpInfo.nID = key;
memcpy(node->pShapeObj,&pShpInfo,sizeof(SHPMBRInfo));
}
}
void InsertQuad(long key,MapRect &itemRect,QuadNode* pNode)
{
assert(pNode != NULL);
if (!IsQuadLeaf(pNode)) //非葉子節點
{
int nCorver = 0; //跨越的子節點個數
int iIndex = -1; //被哪個子節點完全包含的索引號
for (int i = 0; i < 4; i ++)
{
if (pNode->children[i]->Box.Contains(itemRect)
&& pNode->Box.Contains(itemRect))
{
nCorver += 1;
iIndex = i;
}
}
//如果被某一個子節點包含,則進入該子節點
if (/*pNode->Box.Contains(itemRect) ||
pNode->Box.Intersects(itemRect)*/1 <= nCorver)
{
InsertQuad(key,itemRect,pNode->children[iIndex]);
}
//如果跨越了多個子節點,直接放在這個節點中
else if (nCorver == 0)
{
if (pNode->nShpCount == 0) //如果之前沒有節點
{
pNode->nShpCount += 1;
pNode->pShapeObj =
(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*pNode->nShpCount);
}
else
{
pNode->nShpCount += 1;
pNode->pShapeObj =
(SHPMBRInfo *)realloc(pNode->pShapeObj,sizeof(SHPMBRInfo)*pNode->nShpCount);
}
SHPMBRInfo pShpInfo;
pShpInfo.Box = itemRect;
pShpInfo.nID = key;
memcpy(pNode->pShapeObj+pNode->nShpCount-1,&pShpInfo,sizeof(SHPMBRInfo));
}
}
//如果是葉子節點,直接放進去
else if (IsQuadLeaf(pNode))
{
if (pNode->nShpCount == 0) //如果之前沒有節點
{
pNode->nShpCount += 1;
pNode->pShapeObj =
(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*pNode->nShpCount);
}
else
{
pNode->nShpCount += 1;
pNode->pShapeObj =
(SHPMBRInfo *)realloc(pNode->pShapeObj,sizeof(SHPMBRInfo)*pNode->nShpCount);
}
SHPMBRInfo pShpInfo;
pShpInfo.Box = itemRect;
pShpInfo.nID = key;
memcpy(pNode->pShapeObj+pNode->nShpCount-1,&pShpInfo,sizeof(SHPMBRInfo));
}
}
void InsertQuad2(long key,MapRect &itemRect,QuadNode* pNode)
{
QuadNode *node = pNode; //保留根節點副本
SHPMBRInfo pShpInfo;
//節點有孩子
if (0 < node->nChildCount)
{
for (int i = 0; i < 4; i ++)
{
//如果包含或相交,則將節點插入到此節點
if (node->children[i]->Box.Contains(itemRect)
|| node->children[i]->Box.Intersects(itemRect))
{
//node = node->children[i];
Insert(key,itemRect,node->children[i]);
}
}
}
//如果當前節點存在一個子節點時
else if (0 == node->nChildCount)
{
MapRect boxs[4];
node->Box.Split(boxs,boxs+1,boxs+2,boxs+3);
int cnt = -1;
for (int i = 0; i < 4; i ++)
{
//如果包含或相交,則將節點插入到此節點
if (boxs[i].Contains(itemRect))
{
cnt = i;
}
}
//如果有一個矩形包含此物件,則建立四個孩子節點
if (cnt > -1)
{
for (int i = 0; i < 4; i ++)
{
//建立四個節點並插入相應的MBR
node->children[i] = InitQuadNode();
node->children[i]->Box = boxs[i];
}
node->nChildCount = 4;
InsertQuad2(key,itemRect,node->children[cnt]); //遞迴
}
//如果都不包含,則直接將物件插入此節點
if (cnt == -1)
{
if (node->nShpCount == 0) //如果之前沒有節點
{
node->nShpCount += 1;
node->pShapeObj =
(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->nShpCount);
}
else if (node->nShpCount > 0)
{
node->nShpCount += 1;
node->pShapeObj =
(SHPMBRInfo *)realloc(node->pShapeObj,
sizeof(SHPMBRInfo)*node->nShpCount);
}
pShpInfo.Box = itemRect;
pShpInfo.nID = key;
memcpy(node->pShapeObj,
&pShpInfo,sizeof(SHPMBRInfo));
}
}
//當前節點沒有空間物件
/*else if (0 == node->nShpCount)
{
node->nShpCount += 1;
node->pShapeObj =
(SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->nShpCount);
pShpInfo.Box = itemRect;
pShpInfo.nID = key;
memcpy(node->pShapeObj,&pShpInfo,sizeof(SHPMBRInfo));
}*/
}
bool IsQuadLeaf(QuadNode* node)
{
if (NULL == node)
{
return 1;
}
for (int i = 0; i < 4; i ++)
{
if (node->children[i] != NULL)
{
return 0;
}
}
return 1;
}
bool DelFalseNode(QuadNode* node)
{
//如果沒有子節點且沒有要素
if (node->nChildCount ==0 && node->nShpCount == 0)
{
ReleaseQuadTree(&node);
}
//如果有子節點
else if (node->nChildCount > 0)
{
for (int i = 0; i < 4; i ++)
{
DelFalseNode(node->children[i]);
}
}
return 1;
}
void TraversalQuadTree(QuadNode* quadTree,vector<int>& resVec)
{
QuadNode *node = quadTree;
int i = 0;
if (NULL != node)
{
//將本節點中的空間物件儲存陣列中
for (i = 0; i < node->nShpCount; i ++)
{
resVec.push_back((node->pShapeObj+i)->nID);
}
//遍歷孩子節點
for (i = 0; i < node->nChildCount; i ++)
{
if (node->children[i] != NULL)
{
TraversalQuadTree(node->children[i],resVec);
}
}
}
}
void TraversalQuadTree(QuadNode* quadTree,vector<QuadNode*>& arrNode)
{
deque<QuadNode*> nodeQueue;
if (quadTree != NULL)
{
nodeQueue.push_back(quadTree);
while (!nodeQueue.empty())
{
QuadNode* queueHead = nodeQueue.at(0); //取佇列頭結點
arrNode.push_back(queueHead);
nodeQueue.pop_front();
for (int i = 0; i < 4; i ++)
{
if (queueHead->children[i] != NULL)
{
nodeQueue.push_back(queueHead->children[i]);
}
}
}
}
}
void ReleaseQuadTree(QuadNode** quadTree)
{
int i = 0;
QuadNode* node = *quadTree;
if (NULL == node)
{
return;
}
else
{
for (i = 0; i < 4; i ++)
{
ReleaseQuadTree(&node->children[i]);
}
free(node);
node = NULL;
}
node = NULL;
}
long CalByteQuadTree(QuadNode* quadTree,long& nSize)
{
if (quadTree != NULL)
{
nSize += sizeof(QuadNode)+quadTree->nChildCount*sizeof(SHPMBRInfo);
for (int i = 0; i < 4; i ++)
{
if (quadTree->children[i] != NULL)
{
nSize += CalByteQuadTree(quadTree->children[i],nSize);
}
}
}
return 1;
}
程式碼有點長,有需要的朋友可以借鑑並自己優化。