caffe之Data_Layer層程式碼解析
阿新 • • 發佈:2019-02-17
一、 caffe的資料輸入層, 根據不同的輸入方式有不同的層, 因為本人最早接觸的是通過lmdb資料庫輸入資料,而lmdb對應這DataLayer層, 其實還有一個常用的就是ImageDataLayer層, 這個層 可以直接輸入圖片的路徑, 而不需轉換。
上面這張圖, 反應輸入層的繼承關係和不同層次關係, 可見: DataLayer層 繼承自BasePrefetchingDataLayer層,繼承BaseDataLayer層,繼承Layer層。
DataLayer.hpp: 其實這個層只做了一件事情, 那就是reshape之後,從lmdb資料庫中讀取資料, 然後將讀到的資料指標輸出給top, 如果有標籤,也會輸出標籤。
ImageDataLayer.cpp: 這個層也只做了一件事情, 那就是reshape之後,從檔案列表中讀取資料, 然後將讀到的資料指標輸出給top, 如果有標籤,也會輸出標籤
如果只是使用, 那麼參考我的另一篇微博 http://blog.csdn.net/ming5432ming/article/details/78458916 , 沒有必要往下看。
如想了解下具體實現,請往下走。
二、 下面是DataLayer.hpp
先說結論: 其實這個層只做了一件事情, 那就是reshape之後,從lmdb資料庫中讀取資料, 然後將讀到的資料指標輸出給top, 如果有標籤,也會輸出標籤。
#ifndef CAFFE_DATA_LAYER_HPP_ #define CAFFE_DATA_LAYER_HPP_ #include <vector> #include "caffe/blob.hpp" #include "caffe/data_transformer.hpp" #include "caffe/internal_thread.hpp" #include "caffe/layer.hpp" #include "caffe/layers/base_data_layer.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/util/db.hpp" namespace caffe { template <typename Dtype> class DataLayer : public BasePrefetchingDataLayer<Dtype> { public: explicit DataLayer(const LayerParameter& param); virtual ~DataLayer(); virtual void DataLayerSetUp(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top); virtual inline const char* type() const { return "Data"; } //名字是Data, 這個對應這prototxt檔案中的type變數。 virtual inline int ExactNumBottomBlobs() const { return 0; } //data層沒有輸入bottom層 virtual inline int MinTopBlobs() const { return 1; } virtual inline int MaxTopBlobs() const { return 2; } protected: void Next(); bool Skip(); virtual void load_batch(Batch<Dtype>* batch); shared_ptr<db::DB> db_; //lmdb資料庫操作的指標。 shared_ptr<db::Cursor> cursor_; uint64_t offset_; }; } // namespace caffe #endif // CAFFE_DATA_LAYER_HPP_
下面是DataLayer.cpp
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#endif // USE_OPENCV
#include <stdint.h>
#include <vector>
#include "caffe/data_transformer.hpp"
#include "caffe/layers/data_layer.hpp"
#include "caffe/util/benchmark.hpp"
namespace caffe {
template <typename Dtype>
DataLayer<Dtype>::DataLayer(const LayerParameter& param) // 開啟資料庫
: BasePrefetchingDataLayer<Dtype>(param),
offset_() {
db_.reset(db::GetDB(param.data_param().backend()));
db_->Open(param.data_param().source(), db::READ);
cursor_.reset(db_->NewCursor());
}
template <typename Dtype>
DataLayer<Dtype>::~DataLayer() {
this->StopInternalThread();
}
template <typename Dtype>
void DataLayer<Dtype>::DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const int batch_size = this->layer_param_.data_param().batch_size(); //從配置檔案中讀取批處理大小;
// Read a data point, and use it to initialize the top blob.
Datum datum;
datum.ParseFromString(cursor_->value()); //讀取一個數據,並存放在datum中, datum是在caffe.proto中定義的資料結構。 裡面包括channel、height、和width
// Use data_transformer to infer the expected blob shape from datum.
vector<int> top_shape = this->data_transformer_->InferBlobShape(datum); //用讀到的資料初始化top_shape結構。
this->transformed_data_.Reshape(top_shape);
// Reshape top[0] and prefetch_data according to the batch_size.
top_shape[0] = batch_size; //因為datum中沒有批處理的資訊,所以在這補充。
top[0]->Reshape(top_shape);
for (int i = 0; i < this->prefetch_.size(); ++i) {
this->prefetch_[i]->data_.Reshape(top_shape); //reshape每一個險種中的prefetch_
}
LOG_IF(INFO, Caffe::root_solver())
<< "output data size: " << top[0]->num() << ","
<< top[0]->channels() << "," << top[0]->height() << ","
<< top[0]->width();
// label
if (this->output_labels_) {
vector<int> label_shape(1, batch_size); //如果有標籤,則輸出標籤結構。
top[1]->Reshape(label_shape);
for (int i = 0; i < this->prefetch_.size(); ++i) {
this->prefetch_[i]->label_.Reshape(label_shape);
}
}
}
template <typename Dtype>
bool DataLayer<Dtype>::Skip() {
int size = Caffe::solver_count();
int rank = Caffe::solver_rank();
bool keep = (offset_ % size) == rank ||
// In test mode, only rank 0 runs, so avoid skipping
this->layer_param_.phase() == TEST;
return !keep;
}
template<typename Dtype>
void DataLayer<Dtype>::Next() {
cursor_->Next();
if (!cursor_->valid()) { //如果資料庫結束,則從頭開始讀取。
LOG_IF(INFO, Caffe::root_solver())
<< "Restarting data prefetching from start.";
cursor_->SeekToFirst();
}
offset_++;
}
// This function is called on prefetch thread
template<typename Dtype>
void DataLayer<Dtype>::load_batch(Batch<Dtype>* batch) { //每一個執行緒都會執行這個函式。
CPUTimer batch_timer;
batch_timer.Start();
double read_time = 0;
double trans_time = 0;
CPUTimer timer;
CHECK(batch->data_.count());
CHECK(this->transformed_data_.count());
const int batch_size = this->layer_param_.data_param().batch_size();
Datum datum;
for (int item_id = 0; item_id < batch_size; ++item_id) {
timer.Start();
while (Skip()) {
Next();
}
datum.ParseFromString(cursor_->value()); //讀取一個數據;
read_time += timer.MicroSeconds();
if (item_id == 0) {
// Reshape according to the first datum of each batch
// on single input batches allows for inputs of varying dimension.
// Use data_transformer to infer the expected blob shape from datum.
vector<int> top_shape = this->data_transformer_->InferBlobShape(datum);
this->transformed_data_.Reshape(top_shape);
// Reshape batch according to the batch_size.
top_shape[0] = batch_size;
batch->data_.Reshape(top_shape); //批處理batch的 reshape
}
// Apply data transformations (mirror, scale, crop...)
timer.Start();
int offset = batch->data_.offset(item_id); //在一個批次中的偏移量;
Dtype* top_data = batch->data_.mutable_cpu_data(); //讀取cpu的指標,並賦值給top_data;
this->transformed_data_.set_cpu_data(top_data + offset);
this->data_transformer_->Transform(datum, &(this->transformed_data_)); //設定cpu的data指標。
// Copy label.
if (this->output_labels_) { //設定label資料。
Dtype* top_label = batch->label_.mutable_cpu_data();
top_label[item_id] = datum.label();
}
trans_time += timer.MicroSeconds();
Next();
}
timer.Stop();
batch_timer.Stop();
DLOG(INFO) << "Prefetch batch: " << batch_timer.MilliSeconds() << " ms.";
DLOG(INFO) << " Read time: " << read_time / 1000 << " ms.";
DLOG(INFO) << "Transform time: " << trans_time / 1000 << " ms.";
}
INSTANTIATE_CLASS(DataLayer);
REGISTER_LAYER_CLASS(Data);
} // namespace caffe
總結: 其實這個層只做了一件事情, 那就是reshape之後,從資料庫中讀取資料, 然後將讀到的資料指標輸出給top。
三、 既然到了這,順便說一下ImageDataLayer層。
下面是ImageDataLayer.hpp
#ifndef CAFFE_IMAGE_DATA_LAYER_HPP_
#define CAFFE_IMAGE_DATA_LAYER_HPP_
#include <string>
#include <utility>
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/data_transformer.hpp"
#include "caffe/internal_thread.hpp"
#include "caffe/layer.hpp"
#include "caffe/layers/base_data_layer.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
/**
* @brief Provides data to the Net from image files.
*
* TODO(dox): thorough documentation for Forward and proto params.
*/
template <typename Dtype>
class ImageDataLayer : public BasePrefetchingDataLayer<Dtype> {
public:
explicit ImageDataLayer(const LayerParameter& param)
: BasePrefetchingDataLayer<Dtype>(param) {}
virtual ~ImageDataLayer();
virtual void DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline const char* type() const { return "ImageData"; } //這是prototxt中 的type
virtual inline int ExactNumBottomBlobs() const { return 0; }
virtual inline int ExactNumTopBlobs() const { return 2; }
protected:
shared_ptr<Caffe::RNG> prefetch_rng_;
virtual void ShuffleImages();
virtual void load_batch(Batch<Dtype>* batch);
vector<std::pair<std::string, int> > lines_;
int lines_id_;
};
} // namespace caffe
#endif // CAFFE_IMAGE_DATA_LAYER_HPP_
下面是ImageDataLayer.cpp
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <fstream> // NOLINT(readability/streams)
#include <iostream> // NOLINT(readability/streams)
#include <string>
#include <utility>
#include <vector>
#include "caffe/data_transformer.hpp"
#include "caffe/layers/base_data_layer.hpp"
#include "caffe/layers/image_data_layer.hpp"
#include "caffe/util/benchmark.hpp"
#include "caffe/util/io.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/util/rng.hpp"
namespace caffe {
template <typename Dtype>
ImageDataLayer<Dtype>::~ImageDataLayer<Dtype>() {
this->StopInternalThread();
}
template <typename Dtype>
void ImageDataLayer<Dtype>::DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const int new_height = this->layer_param_.image_data_param().new_height(); //從網路檔案中讀取引數;
const int new_width = this->layer_param_.image_data_param().new_width();
const bool is_color = this->layer_param_.image_data_param().is_color();
string root_folder = this->layer_param_.image_data_param().root_folder();
CHECK((new_height == 0 && new_width == 0) ||
(new_height > 0 && new_width > 0)) << "Current implementation requires "
"new_height and new_width to be set at the same time.";
// Read the file with filenames and labels
const string& source = this->layer_param_.image_data_param().source();
LOG(INFO) << "Opening file " << source;
std::ifstream infile(source.c_str()); // 開啟網路檔案中的檔案列表。
string line;
size_t pos;
int label;
while (std::getline(infile, line)) {
pos = line.find_last_of(' '); //圖片路徑與標籤用空格隔開
label = atoi(line.substr(pos + 1).c_str());
lines_.push_back(std::make_pair(line.substr(0, pos), label)); //讀出一行的圖片路徑和標籤
}
CHECK(!lines_.empty()) << "File is empty";
if (this->layer_param_.image_data_param().shuffle()) {
// randomly shuffle data
LOG(INFO) << "Shuffling data";
const unsigned int prefetch_rng_seed = caffe_rng_rand();
prefetch_rng_.reset(new Caffe::RNG(prefetch_rng_seed));
ShuffleImages();
} else {
if (this->phase_ == TRAIN && Caffe::solver_rank() > 0 &&
this->layer_param_.image_data_param().rand_skip() == 0) {
LOG(WARNING) << "Shuffling or skipping recommended for multi-GPU";
}
}
LOG(INFO) << "A total of " << lines_.size() << " images.";
lines_id_ = 0;
// Check if we would need to randomly skip a few data points
if (this->layer_param_.image_data_param().rand_skip()) {
unsigned int skip = caffe_rng_rand() %
this->layer_param_.image_data_param().rand_skip();
LOG(INFO) << "Skipping first " << skip << " data points.";
CHECK_GT(lines_.size(), skip) << "Not enough points to skip";
lines_id_ = skip;
}
// Read an image, and use it to initialize the top blob.
cv::Mat cv_img = ReadImageToCVMat(root_folder + lines_[lines_id_].first, //讀取圖片資料
new_height, new_width, is_color);
CHECK(cv_img.data) << "Could not load " << lines_[lines_id_].first;
// Use data_transformer to infer the expected blob shape from a cv_image.
vector<int> top_shape = this->data_transformer_->InferBlobShape(cv_img);
this->transformed_data_.Reshape(top_shape);
// Reshape prefetch_data and top[0] according to the batch_size.
const int batch_size = this->layer_param_.image_data_param().batch_size();
CHECK_GT(batch_size, 0) << "Positive batch size required";
top_shape[0] = batch_size;
for (int i = 0; i < this->prefetch_.size(); ++i) {
this->prefetch_[i]->data_.Reshape(top_shape); //reshape prefetch引數的結構
}
top[0]->Reshape(top_shape);
LOG(INFO) << "output data size: " << top[0]->num() << ","
<< top[0]->channels() << "," << top[0]->height() << ","
<< top[0]->width();
// label
vector<int> label_shape(1, batch_size); //標籤的reshape
top[1]->Reshape(label_shape);
for (int i = 0; i < this->prefetch_.size(); ++i) {
this->prefetch_[i]->label_.Reshape(label_shape);
}
}
template <typename Dtype>
void ImageDataLayer<Dtype>::ShuffleImages() {
caffe::rng_t* prefetch_rng =
static_cast<caffe::rng_t*>(prefetch_rng_->generator());
shuffle(lines_.begin(), lines_.end(), prefetch_rng);
}
// This function is called on prefetch thread
template <typename Dtype>
void ImageDataLayer<Dtype>::load_batch(Batch<Dtype>* batch) {
CPUTimer batch_timer;
batch_timer.Start();
double read_time = 0;
double trans_time = 0;
CPUTimer timer;
CHECK(batch->data_.count());
CHECK(this->transformed_data_.count());
ImageDataParameter image_data_param = this->layer_param_.image_data_param();
const int batch_size = image_data_param.batch_size();
const int new_height = image_data_param.new_height();
const int new_width = image_data_param.new_width();
const bool is_color = image_data_param.is_color();
string root_folder = image_data_param.root_folder();
// Reshape according to the first image of each batch
// on single input batches allows for inputs of varying dimension.
cv::Mat cv_img = ReadImageToCVMat(root_folder + lines_[lines_id_].first,
new_height, new_width, is_color);
CHECK(cv_img.data) << "Could not load " << lines_[lines_id_].first;
// Use data_transformer to infer the expected blob shape from a cv_img.
vector<int> top_shape = this->data_transformer_->InferBlobShape(cv_img);
this->transformed_data_.Reshape(top_shape);
// Reshape batch according to the batch_size.
top_shape[0] = batch_size;
batch->data_.Reshape(top_shape);
Dtype* prefetch_data = batch->data_.mutable_cpu_data();
Dtype* prefetch_label = batch->label_.mutable_cpu_data();
// datum scales
const int lines_size = lines_.size();
for (int item_id = 0; item_id < batch_size; ++item_id) {
// get a blob
timer.Start();
CHECK_GT(lines_size, lines_id_);
cv::Mat cv_img = ReadImageToCVMat(root_folder + lines_[lines_id_].first,
new_height, new_width, is_color);
CHECK(cv_img.data) << "Could not load " << lines_[lines_id_].first;
read_time += timer.MicroSeconds();
timer.Start();
// Apply transformations (mirror, crop...) to the image
int offset = batch->data_.offset(item_id);
this->transformed_data_.set_cpu_data(prefetch_data + offset);
this->data_transformer_->Transform(cv_img, &(this->transformed_data_));
trans_time += timer.MicroSeconds();
prefetch_label[item_id] = lines_[lines_id_].second;
// go to the next iter
lines_id_++;
if (lines_id_ >= lines_size) {
// We have reached the end. Restart from the first.
DLOG(INFO) << "Restarting data prefetching from start.";
lines_id_ = 0;
if (this->layer_param_.image_data_param().shuffle()) {
ShuffleImages();
}
}
}
batch_timer.Stop();
DLOG(INFO) << "Prefetch batch: " << batch_timer.MilliSeconds() << " ms.";
DLOG(INFO) << " Read time: " << read_time / 1000 << " ms.";
DLOG(INFO) << "Transform time: " << trans_time / 1000 << " ms.";
}
INSTANTIATE_CLASS(ImageDataLayer);
REGISTER_LAYER_CLASS(ImageData);
} // namespace caffe
#endif // USE_OPENCV
總結: 會發現這個cpp的機構和Data_layer.cpp是類似的, 作用就是從檔案列表中讀取檔案,並送給top結構。