Machine Learning Series No.6 -- EM algorithm
EM演算法
1.直觀理解
通俗的理解看出就是EM演算法由於不知道隱變數的分佈,先給出引數的隨機初始值,然後根據引數,去得到隱變數的分佈,然後根據隱變數和觀測變數的共同分佈基於最大似然去重新估計引數,知道引數穩定。
2.數學推導
極大似然估計:
由於log函式是凹函式,有
當
因此以當前點構造的下界為:
因為
所以,可得:
相關推薦
Machine Learning Series No.6 -- EM algorithm
EM演算法 1.直觀理解 通俗的理解看出就是EM演算法由於不知道隱變數的分佈,先給出引數的隨機初始值,然後根據引數,去得到隱變數的分佈,然後根據隱變數和觀測變數的共同分佈基於最大似然去重新估計引數,知道引數穩定。 2.數學推導 極大似然估計:
Machine Learning Series No.4 -- Decision Trees
決策樹 決策樹的總結可以劃分為以下兩個問題: 1.結點如何分裂? 2.如何剪枝? 剪枝有多重策略,常用的是代價複雜度剪枝(Cost complexity pruning),又叫最弱連線剪枝(weakest link pruning)。 剪枝策
Machine Learning Series No.5 -- Boosting & Bagging
提升方法 主要可以分為兩大類:Boosting & Bagging Boosting 主要代表演算法是Adaboost。 Boosting策略主要關注降低偏差。 Boosting的基分類器之間彼此序列,每一輪都更新樣本的權重,更
Machine Learning Series No.9 -- HMM(Hidden Markov Model)
隱馬爾科夫模型(Hidden Markov Model, HMM) 1.生成模型,對p(x,y)p(x,y)進行建模 2.符號說明 SYMBOLS meanings
Machine Learning Series No.2 --Logistic Regression
前言 每次上吳恩達老師的機器學習課,總是能帶給我一些不同的東西(恩,換句話說,也就是我之前都學的啥??)。這次終於開始寫邏輯迴歸了,邏輯迴歸真的是一個非常了不起的演算法,恩,學到後來你會發現,誒,怎麼哪裡都有它? 這裡首先向強調的一點是,邏輯迴歸是一個線性分
Datumbox Machine Learning Framework 0.6.1 Released
The new version of Datumbox Machin
Datumbox Machine Learning Framework 0.6.0 Released
The new version of Datumbox Machin
機器學習之Coursera Andrew Ng 《Machine Learning》 week 6 test 2
本系列文章是coursera上Andrew Ng的《Machine Learning》的測驗題,每次測驗都會有不同的錯,記錄下來,不定時的補充。錯的題目希望能幫我改正一下,我改錯的也希望大家能提出。
2013 UBC Machine Learning NO.6 Bayesian learning
org bsp AC https inf tps edi wikipedia bayesian https://en.wikipedia.org/wiki/Ba
6 Steps To Write Any Machine Learning Algorithm From Scratch: Perceptron Case Study
This goes back to what I originally stated. If you don't understand the basics, don't tackle an algorithm from scratch. For the Perceptron, let's go ahead
6 Questions To Understand Any Machine Learning Algorithm
Tweet Share Share Google Plus There are a lot of machine learning algorithms and each algorithm
AUTOML --- Machine Learning for Automated Algorithm Design.
org font sign sig ngs post ont learn ted 自動算法的機器學習: Machine Learning for Automated Algorithm Design. http://www.ml4aad.org/ AutoM
CS294-112 深度強化學習 秋季學期(伯克利)NO.6 Value functions introduction NO.7 Advanced Q learning
ted 分享圖片 enc cti solution function part related ons -------------------------------------------------------------------------------
CS229 Machine Learning學習筆記:Note 7(K-means聚類、高斯混合模型、EM算法)
learn 不同的 inf ear 公式 course splay alt spa K-means聚類 ng在coursera的機器學習課上已經講過K-means聚類,這裏不再贅述 高斯混合模型 問題描述 聚類問題:給定訓練集\(\{x^{(1)},\cdots,x^{(m
[Machine Learning & Algorithm] 隨機森林(Random Forest)
閱讀目錄 回到頂部 1 什麼是隨機森林? 作為新興起的、高度靈活的一種機器學習演算法,隨機森林(Random Forest,簡稱RF)擁有廣泛的應用前景,從市場營銷到醫療保健保險,既可以用來做市場營銷模擬的建模,統計客戶來源,保留和流失,也可用來預測疾病的風險和病患
python machine learning(Apply for KNN Algorithm)
Following is a simple instance of KNN algorithm Our goal is to build a machine learning model that can learn from the measurement o
Machine Learning Yearning(5、6、7)
Setting up development and test sets 設定開發和測試集 Chapter 5、Your development and test sets 您的開發和測試集 讓我們回到我們早期貓圖片的那個例子:你執
Machine Learning with Time Series Data
As with any data science problem, exploring the data is the most important process before stating a solution. The dataset collected had data on Chicago wea
step Time Series Forecasting with Machine Learning for Household Electricity Consumption
Given the rise of smart electricity meters and the wide adoption of electricity generation technology like solar panels, there is a wealth of electricity
Microsoft Releases ML.NET 0.6 with Machine Learning APIs
Earlier this year, Microsoft launched ML.NET, a cross-platform machine learning platform for .NET developers. This week, the company is rolling out ML.NET