Max Sum Plus Plus HDU1024 ( 動態規劃 多段連續子段和的最大值)
阿新 • • 發佈:2019-02-18
A - Max Sum Plus Plus
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Submit Status
Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
題意:求n個元素陣列的m段連續子段和的最大值
dp[i][j]=前j個數選擇i段的最大值
狀態轉移:dp[i][j]=max(dp[i][j-1] , max{dp[i-1][k]} )+a[j] (i-1<=k<=j-1)
第J個元素可以和前面的連線在一起,構成i段,或者獨自成為一段,
如果是獨自成為一段的話,那麼前j-1個數必須組合出i-1段,選擇多種情況裡的最大值,
最後由於資料較大,所以要壓縮空間,使用滾動陣列
#include<cstdio> #include<algorithm> #include<cmath> #include<cstdlib> #include<cstring> #include<vector> using namespace std; const int maxn=1000005; typedef __int64 LL; int a[maxn],dp[maxn]; int pre[maxn];//對應遞推式的第二項 int main(){ int T; //freopen("Text//in.txt","r",stdin); int n,m; while(~scanf("%d%d",&m,&n)){ for(int i=1;i<=n;i++){ scanf("%d",a+i); dp[i]=pre[i]=0; } int mx; dp[0]=pre[0]=0; for(int i=1;i<=m;i++){ mx=-999999999; for(int j=i;j<=n;j++){ dp[j]=max(dp[j-1],pre[j-1])+a[j]; pre[j-1]=mx; mx=max(dp[j],mx); } } printf("%d\n",mx); } return 0; }