2017-2018 ACM-ICPC, Asia Daejeon Regional Contest
題目傳送門
只打了三個小時。
A. Broadcast Stations
B. Connect3
補題:zz
題解:
C. Game Map
#include<bits/stdc++.h> #define clr(a,b) memset(a,b,sizeof(a)) using namespace std; typedef long long ll; const int maxn=100100; vector<int>ve[100010]; unordered_map<int,int>mp[100010]; int c[100010],de[100010View Code]; struct s { int de,id; }z[100010]; inline bool comp(s a,s b) { return a.de <b.de; } int main(){ int n,m,i,z1,z2,si,j,ans; while(~scanf("%d %d",&n,&m)) { for(i = 0;i <= n;i++) { ve[i].clear(); mp[i].clear(); c[i]= 1; z[i].de = 0; z[i].id = i; de[i] = 0; } for(i = 0;i < m;i++) { scanf("%d %d",&z1,&z2); if(z1 > z2) { int r = z1; z1 = z2; z2 = r; }if(z1 != z2 && !mp[z1][z2]) { mp[z1][z2] = 1; ve[z1].push_back(z2); ve[z2].push_back(z1); z[z1].de++; z[z2].de++; de[z1]++; de[z2]++; } } sort(z,z + n,comp); ans = 1; for(i = 0;i < n;i++) { si = ve[z[i].id].size(); //printf(" %d %d\n",z[i].id,z[i].de); for(j = 0;j < si;j++) { //printf(" %d %d %d\n",z[i].de,z[ve[z[i].id][j]].de,ve[z[i].id][j]); if(z[i].de > de[ve[z[i].id][j]]) { c[z[i].id] = max(c[z[i].id],c[ve[z[i].id][j]] + 1); } } //printf(" %d\n",c[z[i].id]); ans = max(ans,c[z[i].id]); } printf("%d\n",ans); } }
D. Happy Number
#include<iostream> #include<cstring> #include<cmath> #include<cstdlib> #include<cstdio> #include<algorithm> #include<string> #include<map> #include<queue> #include<vector> #include<stack> #define ll long long #define maxn 4001000 #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define rep(i,a,b) for(int i=a;i<=b;i++) using namespace std; int n,len; map<int,int> mp; ll read() { ll x=0,f=1;char ch=getchar(); while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f; } void init() { scanf("%d",&n); len=1; mp[n]=1; } void work() { while(1) { int x=n,ans=0; while(x>0) { ans+=(x%10)*(x%10); x/=10; } if(ans==1) { printf("HAPPY"); return; } if(mp[ans]!=0) { printf("UNHAPPY"); return; } else mp[ans]=++len; n=ans; } } int main() { init(); work(); }View Code
E. How Many to Be Happy
補題:kk
一開始想了個假算法,沒被隊友hack,然後wa3?最近好像經常寫假算法
對於這樣最小生成樹的題的選邊問題,我們一定要考慮克魯斯卡爾的過程,對於一條邊權為$w$的邊,如果他要在最小生成樹上,那麽前提條件是權值比他小的邊不會把u到v所屬的兩個結合連接在一起,也就是說,現在我們要去掉一些權值小於$w$的邊,讓u和v分在不同的兩個集合裏面,想到這裏就會想到最小割的模型,對於每條邊,都把權值小於他的邊加入到圖裏,然後求一個最小割就可以了。
所以,最小生成樹的題一定要考慮克魯斯卡爾!這真是一個神奇的算法,還有對數據範圍要敏感,$n=100$也應該想到網絡流。
#include<bits/stdc++.h> #define clr(a,b) memset(a,b,sizeof(a)) using namespace std; typedef long long ll; const ll INFLL = 0x3f3f3f3f3f3f3f3f; const int INF = 0x3f3f3f3f; const int maxn = 510; struct Edge { int to, flow, nxt; Edge(){} Edge(int to, int nxt, int flow):to(to),nxt(nxt), flow(flow){} }edge[maxn << 2]; int head[maxn], dep[maxn]; int S, T; int N, n, m, tot,ans; void Init(int n) { N = n; for (int i = 0; i < N; ++i) head[i] = -1; tot = 0; } void addv(int u, int v, int w, int rw = 0) { edge[tot] = Edge(v, head[u], w); head[u] = tot++; edge[tot] = Edge(u, head[v], rw); head[v] = tot++; } bool BFS() { for (int i = 0; i < N; ++i) dep[i] = -1; queue<int>q; q.push(S); dep[S] = 1; while (!q.empty()) { int u = q.front(); q.pop(); for (int i = head[u]; ~i; i = edge[i].nxt) { if (edge[i].flow && dep[edge[i].to] == -1) { dep[edge[i].to] = dep[u] + 1; q.push(edge[i].to); } } } return dep[T] < 0 ? 0 : 1; } int DFS(int u, int f) { if (u == T || f == 0) return f; int w, used = 0; for (int i = head[u]; ~i; i = edge[i].nxt) { if (edge[i].flow && dep[edge[i].to] == dep[u] + 1) { w = DFS(edge[i].to, min(f - used, edge[i].flow)); edge[i].flow -= w; edge[i ^ 1].flow += w; used += w; if (used == f) return f; } } if (!used) dep[u] = -1; return used; } int Dicnic() { int ans = 0; while (BFS()) { ans += DFS(S, INF); } return ans; } struct node{ int u,v,w; friend bool operator<(const node &a,const node &b) { return a.w<b.w; } }a[maxn]; int main(){ while(cin>>n>>m) { for(int i=1;i<=m;i++) { scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w); } ans=0; sort(a+1,a+1+m); for(int i=1;i<=m;i++) { Init(n+1); for(int j=1;j<i;j++) { if(a[j].w>=a[i].w)break; addv(a[j].u,a[j].v,1); addv(a[j].v,a[j].u,1); } S=a[i].u,T=a[i].v; ans+=Dicnic(); // printf("debug\n"); } printf("%d\n",ans); } }View Code
F. Philosphoer‘s Walk
#include<bits/stdc++.h> #define clr(a,b) memset(a,b,sizeof(a)) using namespace std; typedef long long ll; const int maxn=510; struct s { int a,b; }in; int Pow[110]; int Node[5][2] = {0,0,1,1,1,2,2,2,2,1}; inline void init(void) { int i,tmp = 1; for(i = 0;i <= 30;i++) { Pow[i] = tmp; tmp <<= 1; } } inline s f(int num,int step) { int pos,st; s jk; if(num == 1) { s tmp; tmp.a = Node[step][0]; tmp.b = Node[step][1]; return tmp; } pos = (step - 1) / (Pow[num - 1] * Pow[num - 1]); st = (step - 1) % (Pow[num - 1] * Pow[num - 1]) + 1; s nex = f(num - 1,st); if(pos == 0) { jk.a = 0 + nex.b; jk.b = 0 + nex.a; } else if(pos == 1) { jk.a = 0 + nex.a; jk.b = Pow[num - 1] + nex.b; } else if(pos == 2) { jk.a = Pow[num - 1] + nex.a; jk.b = Pow[num - 1] + nex.b; } else { jk.a = Pow[num] + 1 - nex.b; jk.b = Pow[num - 1] + 1 - nex.a; } return jk; } int main(){ int n,m,i; init(); while(~scanf("%d %d",&n,&m)) { for(i = 1;i <= 30;i++) { if(Pow[i] == n) { break; } } in = f(i,m); printf("%d %d\n",in.a,in.b); } }View Code
G. Rectilinear Regions
H. Rock Paper Scissors
#include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> #define maxn (1<<18) #define pi 3.141592653589793238462643383 using namespace std; struct complex { double re,im; complex(double r=0.0,double i=0.0) {re=r,im=i;} void print() {printf("%.lf ",re);} } a[maxn*2],b[maxn*2],W[2][maxn*2]; int N,na,nb,rev[maxn*2],n,m; char s1[101010],s2[101010]; double c[maxn*2],ans; complex operator +(const complex&A,const complex&B) {return complex(A.re+B.re,A.im+B.im);} complex operator -(const complex&A,const complex&B) {return complex(A.re-B.re,A.im-B.im);} complex operator *(const complex&A,const complex&B) {return complex(A.re*B.re-A.im*B.im,A.re*B.im+A.im*B.re);} void FFT(complex*a,int f) { complex x,y; for (int i=0; i<N; i++) if (i<rev[i]) swap(a[i],a[rev[i]]); for (int i=1; i<N; i<<=1) for (int j=0,t=N/(i<<1); j<N; j+=i<<1) for (int k=0,l=0; k<i; k++,l+=t) x=W[f][l]*a[j+k+i],y=a[j+k],a[j+k]=y+x,a[j+k+i]=y-x; if (f) for (int i=0; i<N; i++) a[i].re/=N; } void work() { for (int i=0; i<N; i++) { int x=i,y=0; for (int k=1; k<N; x>>=1,k<<=1) (y<<=1)|=x&1; rev[i]=y; } for (int i=0; i<N; i++) W[0][i]=W[1][i]=complex(cos(2*pi*i/N),sin(2*pi*i/N)),W[1][i].im=-W[0][i].im; } void doit() { work(),FFT(a,0),FFT(b,0); for (int i=0; i<N; i++) a[i]=a[i]*b[i]; FFT(a,1); for (int i=0; i<na+nb-1; i++) { c[i]+=a[i].re; if(i>=m-1) ans=max(ans,c[i]); //printf("%d %d\n",i,c[i]); } } void popo() { scanf("%d%d",&n,&m); scanf("%s",s1); scanf("%s",s2); memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); na=n;nb=m; for(int i=0;i<n;i++) if(s1[i]==‘R‘) a[i].re=1; for(int i=0;i<m;i++) if(s2[i]==‘P‘) b[m-i-1].re=1; for (N=1; N<na||N<nb; N<<=1); N<<=1; doit(); //printf("------\n"); memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); for(int i=0;i<n;i++) if(s1[i]==‘P‘) a[i].re=1; for(int i=0;i<m;i++) if(s2[i]==‘S‘) b[m-i-1].re=1; for (N=1; N<na||N<nb; N<<=1); N<<=1; doit(); //printf("------\n"); memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); for(int i=0;i<n;i++) if(s1[i]==‘S‘) a[i].re=1; for(int i=0;i<m;i++) if(s2[i]==‘R‘) b[m-i-1].re=1; for (N=1; N<na||N<nb; N<<=1); N<<=1; doit(); } int main() { popo(); printf("%.lf\n",ans); }View Code
I. Slot Machines
補題kk
我們把這個數組倒過來,現在變成了我們要去掉末尾的一段,使得前面部分循環,並且不完整的循環節在數列的前方。對於兩段循環來說,開頭一部分肯定是一樣的(否則怎麽能叫循環呢),如果有一段循環不完整,那麽開頭一部分肯定是一樣的,而這裏循環的開頭就是倒過來的數組的前綴,後面是一個完整的數組,前綴和後綴相同,我們想到了什麽呢?kmp!
但是這裏我們只需要$fail$就可以了。
先對倒過來的數組$fail$一遍,得到$f$數組,然後循環長度就變成了$i-f[i]$,對此我們稍微證明一下為什麽。
對於$i-f[i]>=f[i]$,也就是相等的前綴和後綴不重疊,那麽這必然是一個循環長度。
對於$i-f[i]<f[i]$,也就是相等的前綴喝後綴是重疊的,那麽我們就要稍微理解一下,設$len=i-f[i]$那麽必然有$s{f[i]->f[i]+len]}==s{f[i]-len->f[i]}$,然後一步一步的畫過來,這個也是循環節(這部分還是畫圖好理解些)
#include<bits/stdc++.h> #define clr(a,b) memset(a,b,sizeof(a)) using namespace std; typedef long long ll; const int maxn=1000010; int n; int a[maxn],f[maxn]; void fail(){ f[0]=-1; for(int j=1;j<n;j++) { for(int i=f[j-1];;i=f[i]) { if(a[j]==a[i+1]){ f[j]=i+1; break; }else if(i==-1) { f[j]=-1; break; } } } } int main(){ while(cin>>n) { for(int i=n-1;i>=0;i--) { scanf("%d",&a[i]); } fail(); int k=n,p=1; for(int i=0;i<n;i++) { int kk=n-i-1; int pp=i-f[i]; if(kk+pp<k+p){ k=kk,p=pp; }else if(kk+pp==k+p&&pp<p){ k=kk,p=pp; } } printf("%d %d\n",k,p); } }View Code
J. Strongly Matchable
K. Untangling Chain
L. Vacation Plans
2017-2018 ACM-ICPC, Asia Daejeon Regional Contest