基於mykernel完成時間片輪轉多道程序內核
學號093 原創作品,轉載請註明出處。
本實驗資源來自 https://github.com/mengning/linuxkernel/
實驗目的
- 分析進程的啟動和進程的切換機制
- 理解操作系統是如何工作
實驗環境
- 實驗樓
實驗步驟
- cd LinuxKernel/linux-3.9.4
- rm -rf mykernel
- patch -p1 < ../mykernel_for_linux3.9.4sc.patch #打補丁
- make allnoconfig
- make #編譯
- qemu -kernel arch/x86/boot/bzImage #從qemu窗口中可以看到my_start_kernel在執行,同時my_timer_handler時鐘中斷處理程序周期性執行。
- cd mykernel #可以看到qemu窗口輸出的內容的代碼mymain.c和myinterrupt.c
至此,我們已經初始化好了系統環境。下面就讓我們開始編寫內核實現時間片輪轉多道程序。
內核分析
從孟寧老師的主頁上獲取源碼 https://github.com/mengning/mykernel
下載mymain.c ,myinterrupt.c 和 mypcb.h三個文件。
重新編譯。#重新編譯之前要make clean
mypcb.h
#define MAX_TASK_NUM 4 #defineKERNEL_STACK_SIZE 1024*2 /* CPU-specific state of this task */ struct Thread { unsigned long ip; unsigned long sp; }; typedef struct PCB{ int pid; volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ unsigned long stack[KERNEL_STACK_SIZE];/* CPU-specific state of this task */ struct Thread thread; unsigned long task_entry; struct PCB *next; }tPCB; void my_schedule(void);
兩個宏定義,
MAX_TASK_NUM 4 定義了最大任務數
KERNEL_STACK_SIZE 1024*2 定義了堆棧的內核大小
Thread結構體裏的ip用來存儲當前指令,sp用來存儲棧頂位置。
PCB結構體裏面存儲了進程的id,狀態,以及next指針,可以形成pcb鏈。
mymain.c
/* * linux/mykernel/mymain.c * * Kernel internal my_start_kernel * * Copyright (C) 2013 Mengning * */ #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" tPCB task[MAX_TASK_NUM]; tPCB * my_current_task = NULL; volatile int my_need_sched = 0; void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ for(i=1;i<MAX_TASK_NUM;i++) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; //*(&task[i].stack[KERNEL_STACK_SIZE-1] - 1) = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1]; task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]); task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile( "movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */ "pushl %1\n\t" /* push ebp */ "pushl %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to eip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } int i = 0; void my_process(void) { while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }
首先是內核加載時候進行的初始化函數my_start_kernel
該函數首先初始化了一個id為0的進程,狀態為可運行狀態,設置進程的入口地址為my_process函數的地址,thread.sp指向stack[]的尾地址,最後將next指向自己。
接下來for循環創建了pid為1,2,3的三個進程。並且將這4個進程連在一起。
接下來就是最重要的內嵌匯編代碼
asm volatile( "movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */ "pushl %1\n\t" /* push ebp */ "pushl %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to eip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ );
首先把第一個輸入賦給esp寄存器,即task[pid].thread.sp 的值給esp 。
然後 task[pid].thread.sp 壓棧,因為是空棧,esp的值和ebp的值相同。
接著 task[pid].thread.ip 壓棧
最後,把ip出棧賦值給eip
myinterrupt.c
/* * linux/mykernel/myinterrupt.c * * Kernel internal my_timer_handler * * Copyright (C) 2013 Mengning * */ #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. * it runs in the name of current running process, * so it use kernel stack of current running process */ void my_timer_handler(void) { #if 1 if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; #endif return; } void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to next process */ asm volatile( "pushl %%ebp\n\t" /* save ebp */ "movl %%esp,%0\n\t" /* save esp */ "movl %2,%%esp\n\t" /* restore esp */ "movl $1f,%1\n\t" /* save eip */ "pushl %3\n\t" "ret\n\t" /* restore eip */ "1:\t" /* next process start here */ "popl %%ebp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
定義了兩個函數my_timer_handler()函數和my_schedule()函數
my_time_handler()就是時間為1000時將my_need_sched設置為1,這樣就可以使my_process函數調用my_schedule函數來切換進程。
讓我們看啊可能my_schedule函數中的內嵌匯編代碼
asm volatile( "pushl %%ebp\n\t" /* save ebp */ "movl %%esp,%0\n\t" /* save esp */ "movl %2,%%esp\n\t" /* restore esp */ "movl $1f,%1\n\t" /* save eip */ "pushl %3\n\t" "ret\n\t" /* restore eip */ "1:\t" /* next process start here */ "popl %%ebp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) );
首先明白一個概念,當 當前進程變為下一個進程時,那麽下一個進程就變成當前進程,當前進程變為下一個進程。就好似老師上課說的,再撿一個孩子也是不乖的。
理解這個概念後,匯編代碼就好理解了,保存下一條指令的地址,切換到另一個棧,然後執行,當切換回來時,把保存的指令彈出,這樣就可以做到進程之間的切換。
總結
操作系統是如何工作的?
-
-
- 存儲程序計算機
- 函數調用堆棧
- 中斷
-
通過實驗了解了匯編語言的基本指令,以及對計算機的進程切換有了大致了解。
基於mykernel完成時間片輪轉多道程序內核