Sasha and a Very Easy Test CodeForces - 1109E (數學,線段樹)
阿新 • • 發佈:2019-03-11
class long scanf string.h first air define queue fine
大意: 給定n元素序列, q個操作: (1)區間乘 (2)單點除(保證整除) (3)區間求和對m取模
要求回答所有操作(3)的結果
主要是除法難辦, 假設單點除$x$, $x$中與$m$互素的素因子可以直接費馬小定理求逆, 其余因子維護一個向量即可.
這種沙茶題結果各種細節出錯改了一個多小時......太菜了
#include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ‘\n‘ using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} //head const int N = 1e5+10; int n, m, q, sz, Phi; vector<int> A; int phi(int x) { int s = x, mx = sqrt(x+0.5); REP(i,2,mx) if (x%i==0) { s = s/i*(i-1); A.pb(i); while (x%i==0) x/=i; } if (x>1) A.pb(x),s=s/x*(x-1); sz = A.size(); return s; } ll qpow(ll a,ll n) {ll r=1%m;for (a%=m;n;a=a*a%m,n>>=1)if(n&1)r=r*a%m;return r;} int sum[N<<2], rtag[N<<2], tag[N<<2], res[N<<2]; int c[N<<2][10], tagc[N<<2][10]; int ans, ql, qr, qv[10]; void pd(int o) { if (tag[o]!=1) { tag[lc] = (ll)tag[lc]*tag[o]%m; tag[rc] = (ll)tag[rc]*tag[o]%m; sum[lc] = (ll)sum[lc]*tag[o]%m; sum[rc] = (ll)sum[rc]*tag[o]%m; tag[o] = 1; } if (rtag[o]!=1) { res[lc] = (ll)res[lc]*rtag[o]%m; res[rc] = (ll)res[rc]*rtag[o]%m; rtag[lc] = (ll)rtag[lc]*rtag[o]%m; rtag[rc] = (ll)rtag[rc]*rtag[o]%m; rtag[o] = 1; } REP(i,0,sz-1) { c[lc][i]+=tagc[o][i],c[rc][i]+=tagc[o][i]; tagc[lc][i]+=tagc[o][i],tagc[rc][i]+=tagc[o][i]; tagc[o][i]=0; } } void pu(int o) { sum[o]=(sum[rc]+sum[lc])%m; } void build(int o, int l, int r) { sum[o]=res[o]=tag[o]=rtag[o]=1; if (l==r) { int t; scanf("%d", &t); sum[o] = t%m; REP(i,0,sz-1) { while (t%A[i]==0) t/=A[i],++c[o][i]; } res[o] = t%m; return; } build(ls),build(rs); pu(o); } void mul(int o, int l, int r, int x, int R) { if (ql<=l&&r<=qr) { sum[o] = (ll)sum[o]*x%m; tag[o] = (ll)tag[o]*x%m; res[o] = (ll)res[o]*R%m; rtag[o] = (ll)rtag[o]*R%m; REP(i,0,sz-1) c[o][i]+=qv[i],tagc[o][i]+=qv[i]; return; } pd(o); if (mid>=ql) mul(ls,x,R); if (mid<qr) mul(rs,x,R); pu(o); } void div(int o, int l, int r, int x, int v) { if (l==r) { REP(i,0,sz-1) { while (v%A[i]==0) v/=A[i],--c[o][i]; } res[o] = (ll)res[o]*qpow(v,Phi-1)%m; sum[o] = res[o]; REP(i,0,sz-1) sum[o]=(ll)sum[o]*qpow(A[i],c[o][i])%m; return; } pd(o); if (mid>=x) div(ls,x,v); else div(rs,x,v); pu(o); } void query(int o, int l, int r, int ql, int qr) { if (ql<=l&&r<=qr) return (ans+=sum[o])%=m,void(); pd(o); if (mid>=ql) query(ls,ql,qr); if (mid<qr) query(rs,ql,qr); } int main() { scanf("%d%d", &n, &m); Phi = phi(m); build(1,1,n); scanf("%d", &q); while (q--) { int op, x, p; scanf("%d", &op); if (op==1) { scanf("%d%d%d",&ql,&qr,&x); int t = x; REP(i,0,sz-1) { qv[i] = 0; while (t%A[i]==0) t/=A[i],++qv[i]; } mul(1,1,n,x,t); } else if (op==2) { scanf("%d%d",&p,&x); div(1,1,n,p,x); } else { scanf("%d%d",&ql,&qr); ans = 0, query(1,1,n,ql,qr); printf("%d\n", ans); } } }
Sasha and a Very Easy Test CodeForces - 1109E (數學,線段樹)