[paper reading] C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection CVPR2019
MIL陷入局部最優,檢測到局部,無法完整的檢測到物體。將instance劃分為空間相關和類別相關的子集。在這些子集中定義一系列平滑的損失近似代替原損失函數,優化這些平滑損失。
C-MIL learns instance subsets, where the instances are spatially related, i.e., overlapping with each other, and class related, i.e., having similar object class scores.
C-MIL treats images as bags and image regions generated by an object proposal method [24,32] as instances
[paper reading] C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection CVPR2019
相關推薦
[paper reading] C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection CVPR2019
ppi ges cores sets spatial 完整 with rop ima MIL陷入局部最優,檢測到局部,無法完整的檢測到物體。將instance劃分為空間相關和類別相關的子集。在這些子集中定義一系列平滑的損失近似代替原損失函數,優化這些平滑損失。 C-MIL
深度學習:論文self-trainsfer learning for weakly supervised lesion localization
self-training learning: 自我訓練學習 weakly supervised :弱監督學習 主要關注三種弱監督型別: 第一種是不完全監督,即只有訓練資料集的一個(通常很小的)子集有標籤,其它資料則沒有標籤。 第二種是不確切監督,即只有粗粒度的標籤。又以影象
多示例學習 multiple instance learning (MIL)
最近看了幾篇關於多示例學習的文章,雖然都是醫學方面的,但是還是對我很有啟發。另外,多示例學習近幾年已經逐漸被用於基於機器學習框架的組織病理學影象癌症檢測等方面,是計算機輔助診斷這一學科
Multiple Instance Learning
///////////////////////////////////////////推薦學習組////////////////////////////// http://www.robots.ox.ac.uk/~vgg/ ////////////////////////
讀《Tooth-Marked Tongue Recgnition Using Multiple Instance Learning and CNN Features》
本人 組會彙報的一篇關於齒痕舌判定的文章,貼上PPT 涉及多示例學習和神經網路方面知識。
Visual Tracking with Online Multiple Instance Learning讀書筆記
MIL是一篇關於tracking中基於tracking-by-detection框架的文章,而且關注的是好的正樣本的問題。當然之前那篇裡面的struck也是關注這個問題。作者首先發現,利用當前幀的st
Paper Reading: Recombinator Networks: Learning Coarse-to-Fine FeatureAggregation
大小 destroy normal png post 結構化 del AC ear Github 源碼: https://github.com/SinaHonari/RCN convnet 存在的問題: max-pooling: for tasks requiring p
【Paper Reading】Learning while Reading
協作 每一個 info ++ 平時 arr 向上 移除 否則 Learning while Reading 不限於具體的書,只限於知識的寬度 這個系列集合了一周所學所看的精華,它們往往來自不只一本書 我們之所以將自然界分類,組織成各種概念,並按其分類,
paper reading----Xception: Deep Learning with Depthwise Separable Convolutions
module 之間 pap AD lin reg arch dual pooling 背景以及問題描述: Inception-style models的基本單元是Inception module。Inception model是Inception mod
Paper Reading——LEMNA:Explaining Deep Learning based Security Applications
bsp paper mat ant function using for arr class Motivation: The lack of transparency of the deep learning models creates key barriers to
【Paper Reading】Bayesian Face Sketch Synthesis
bayesian .com ext tar mod images problem str targe Contribution: 1) Systematic interpretation to existing face sketch synthesis methods.
Paper Reading - Convolutional Image Captioning ( CVPR 2018 )
useful rom ets ict inno entropy indexing com rtu Innovations: The authors develop a convolutional ( CNN-based ) image captioning method
paper reading:gaze tracking
tps sin nbsp papers https ont pen pdf aid https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Krafka_Eye_Tracking_for_CVPR_
Paper Reading - Attention Is All You Need ( NIPS 2017 )
int tput represent enc perf task desc compute .com Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequen
Multi-Instance Learning 和 Latent SVM
MIL和weakly supervised learning有扯不清的關係(有點蝦和蛋的關係)。 Pedro的Latent SVM算是MILSVM的一個變種,相當於在MIL上加上技巧就可以實現Latent SVM,既然是技巧,就是沒有大的理論突
paper reading: TP-GAN
Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Original Paper: TP-GAN Abstract TP-GAN simultaneously pe
Paper Reading: Pose-Aware Face Recognition in the wild
Pose-Aware Face Recognition in the wild (CVPR 2016) paper link: https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Masi_Pose-Awar
[Paper Reading] A QoE-based Sender Bit Rate Adaptation Scheme for Real-time Video Transmission
A QoE-based Sender Bit Rate Adaptation Scheme for Real-time Video Transmission in Wireless Networks 發表 這篇文章發表於CISP2013,作者是南郵的Chao Qian。 概述
Paper reading:BodyNet: Volumetric Inference of 3D Human Body Shapes
標題:BodyNet: Volumetric Inference of 3D Human Body Shapes 作者:Gul Varol, Duygu Ceylan Bryan Russell Jimei Yang Ersin Yumer,z Ivan La
Paper Reading 之(1)AlexNet
Paper Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classification with deep co