loj 3090 「BJOI2019」勘破神機 - 數學
阿新 • • 發佈:2019-04-27
二次 gcd 組合數 ole long long 。。 borde pac color
\begin{align}
G‘_{n} &= 3G_{n - 1} + 2\sum_{i = 0}^{n - 2}G_{i} \\
&= 4G_{n - 1} - 3G_{n - 2} - 2\sum_{i = 0}^{n - 3} G_{i - 1} + 2\sum_{i =0}^{n - 2}G_i \\
&= 4G_{n - 1} - G_{n - 2}
\end{align}
$$
題目傳送門
傳送門
題目大意
設$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的網格的方案數,設$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的網格的方案數.
- 給定$l, r, k$,求$\frac{1}{r - l + 1}\sum_{i = l}^{r} \binom{F_{i}}{k}$.
- 給定$l, r, k$,求$\frac{1}{r - l + 1}\sum_{i = l}^{r} \binom{G_{i}}{k}$.
之前好像在loj / uoj群上問過求Fibonacci求立方和。sad。。。
校內考的時候忘了求數列通項,sad。。。
首先用Stirling數把組合數拆成通常冪。
對於第一部分,直接用$Fibonacci$通項,由於$5$不是模$998244353$的二次剩余,所以把答案在運算中表示成$a + b\sqrt{5}$的形式。
第$n$項的$k$次冪大概是$(a^n + b^n)^{K}$,這個方便直接求和。用二項式定理展開就行了。
對於第二部分。考察選手是否上過高考數學課(bushi
顯然當$2 \nmid n$時$G_{n} = 0$,現在考慮$G‘_{n} = G_{2n}$。
註意到最後只有這幾種填法:
所以有
$$
G‘_{n} &= 3G_{n - 1} + 2\sum_{i = 0}^{n - 2}G_{i} \\
&= 4G_{n - 1} - 3G_{n - 2} - 2\sum_{i = 0}^{n - 3} G_{i - 1} + 2\sum_{i =0}^{n - 2}G_i \\
&= 4G_{n - 1} - G_{n - 2}
\end{align}
$$
用特征根法推通項(不會的話可以回教室了)。然後做完了。
(我被Jode錘爆了。瑟瑟發抖.jpg)
Code
#include <bits/stdc++.h> using namespace std; typedef bool boolean; #define ll long long void exgcd(int a, int b, int& x, int& y) { if (!b) { x = 1, y = 0; } else { exgcd(b, a % b, y, x); y -= (a / b) * x; } } int inv(int a, int n) { int x, y; exgcd(a, n, x, y); return (x < 0) ? (x + n) : (x); } const int Mod = 998244353; template <const int Mod = :: Mod> class Z { public: int v; Z() : v(0) { } Z(int x) : v(x){ } Z(ll x) : v(x % Mod) { } friend Z operator + (const Z& a, const Z& b) { int x; return Z(((x = a.v + b.v) >= Mod) ? (x - Mod) : (x)); } friend Z operator - (const Z& a, const Z& b) { int x; return Z(((x = a.v - b.v) < 0) ? (x + Mod) : (x)); } friend Z operator * (const Z& a, const Z& b) { return Z(a.v * 1ll * b.v); } friend Z operator ~(const Z& a) { return inv(a.v, Mod); } friend Z operator - (const Z& a) { return Z(0) - a; } Z& operator += (Z b) { return *this = *this + b; } Z& operator -= (Z b) { return *this = *this - b; } Z& operator *= (Z b) { return *this = *this * b; } friend boolean operator == (const Z& a, const Z& b) { return a.v == b.v; } }; Z<> qpow(Z<> a, int p) { Z<> rt = Z<>(1), pa = a; for ( ; p; p >>= 1, pa = pa * pa) { if (p & 1) { rt = rt * pa; } } return rt; } typedef Z<> Zi; template <const int I> class ComplexTemp { public: Zi r, v; ComplexTemp() : r(0), v(0) { } ComplexTemp(Zi r) : r(r), v(0) { } ComplexTemp(Zi r, Zi v) : r(r), v(v) { } friend ComplexTemp operator + (const ComplexTemp& a, const ComplexTemp& b) { return ComplexTemp(a.r + b.r, a.v + b.v); } friend ComplexTemp operator - (const ComplexTemp& a, const ComplexTemp& b) { return ComplexTemp(a.r - b.r, a.v - b.v); } friend ComplexTemp operator - (const ComplexTemp& a, const int& b) { return ComplexTemp(a.r - b, a.v); } friend ComplexTemp operator * (const ComplexTemp& a, const ComplexTemp& b) { return ComplexTemp(a.r * b.r + a.v * b.v * I, a.r * b.v + a.v * b.r); } friend ComplexTemp operator * (const ComplexTemp& a, const Zi& x) { return ComplexTemp(a.r * x, a.v * x); } friend ComplexTemp operator / (const ComplexTemp& a, const ComplexTemp& b) { ComplexTemp c = b.conj(); return a * c * ~((b * c).r); } ComplexTemp conj() const { return ComplexTemp(r, -v); } boolean operator == (ComplexTemp b) { return r == b.r && v == b.v; } }; const int Kmx = 510; Zi s1[Kmx][Kmx]; Zi comb[Kmx][Kmx]; Zi fac[Kmx], _fac[Kmx]; void prepare(int n) { fac[0] = 1; for (int i = 1; i <= n; i++) { fac[i] = fac[i - 1] * i; } _fac[n] = ~fac[n]; for (int i = n; i; i--) { _fac[i - 1] = _fac[i] * i; } s1[0][0] = 1; for (int i = 1; i <= n; i++) { s1[i][0] = 0, s1[i][i] = 1; for (int j = 1; j < i; j++) { s1[i][j] = s1[i - 1][j - 1] + s1[i - 1][j] * (i - 1); } } comb[0][0] = 1; for (int i = 1; i <= n; i++) { comb[i][0] = comb[i][i] = 1; for (int j = 1; j < i; j++) { comb[i][j] = comb[i - 1][j - 1] + comb[i - 1][j]; } } } template <typename T> T qpow(T a, ll p) { T rt = Zi(1), pa = a; for ( ; p; p >>= 1, pa = pa * pa) { if (p & 1) { rt = rt * pa; } } return rt; } namespace subtask1 { typedef ComplexTemp<5> Complex; const Zi inv2 ((Mod + 1) >> 1); const Complex q1 (inv2, inv2), q2 (inv2, -inv2); Complex pwq1[Kmx], pwq2[Kmx], pwqq[Kmx][Kmx]; Complex get_sum(int k1, int k2, ll n) { Complex x = pwq1[k1] * pwq2[k2]; if (x == Zi(1)) return Zi(n); return (pwqq[k1][k2] - 1) / (x - 1); } inline void init() { pwq1[0] = pwq2[0] = Zi(1); for (int i = 1; i < Kmx; i++) { pwq1[i] = pwq1[i - 1] * q1; pwq2[i] = pwq2[i - 1] * q2; } } Zi work(ll n, int K) { Complex coef = qpow(Complex(0, ~Zi(5)), K); Complex ret (0, 0); for (int k = 0; k <= K; k++) { // Complex tmp = get_sum(pwq1[k] * pwq2[K - k], n) * comb[K][k]; Complex tmp = get_sum(k, K - k, n) * comb[K][k]; if ((K - k) & 1) { ret = ret - tmp; } else { ret = ret + tmp; } } ret = ret * coef; assert(ret.v.v == 0); // cerr << n << " " << K << " " << ret.r.v << ‘\n‘; return ret.r; } Zi solve(ll n, int K) { Zi ans = 0; Complex q1n = qpow(q1, n + 1); Complex q2n = qpow(q2, n + 1); pwqq[0][0] = Zi(1); for (int i = 0; i <= K; i++) { for (int j = (i == 0); i + j <= K; j++) { pwqq[i][j] = ((!i) ? (pwqq[i][j - 1] * q2n) : (pwqq[i - 1][j] * q1n)); } } for (int i = 1; i <= K; i++) { Zi tmp = work(n, i) * s1[K][i] * _fac[K]; if ((K - i) & 1) { ans -= tmp; } else { ans += tmp; } } return ans; } void __main__(ll l, ll r, int K) { ++l, ++r; Zi ans = solve(r, K) - solve(l - 1, K); ans = ans * ~Zi(r - l + 1); printf("%d\n", ans.v); } } namespace subtask2 { typedef ComplexTemp<3> Complex; const Zi inv2 ((Mod + 1) >> 1); const Zi inv3 ((Mod + 1) / 3); const Zi inv6 = inv2 * inv3; const Complex c1 (inv2, -inv6), c2 (inv2, inv6); const Complex q1 (2, Mod - 1), q2 (2, 1); Complex pwq1[Kmx], pwq2[Kmx], pwc1[Kmx], pwc2[Kmx]; Complex pwqq[Kmx][Kmx]; Complex get_sum(int k1, int k2, ll n) { Complex x = pwq1[k1] * pwq2[k2]; if (x == Zi(1)) return Zi(n); return (pwqq[k1][k2] - 1) / (x - 1); } inline void init() { pwq1[0] = pwq2[0] = pwc1[0] = pwc2[0] = Zi(1); for (int k = 1; k < Kmx; k++) { pwq1[k] = pwq1[k - 1] * q1; pwq2[k] = pwq2[k - 1] * q2; pwc1[k] = pwc1[k - 1] * c1; pwc2[k] = pwc2[k - 1] * c2; } } Zi work(ll n, int K) { Complex ret (0, 0); for (int k = 0; k <= K; k++) { Complex tmp = get_sum(k, K - k, n) * comb[K][k]; Complex b = pwc1[k] * pwc2[K - k]; tmp = tmp * b; ret = ret + tmp; } assert(ret.v.v == 0); // cerr << n << " " << K << " " << ret.r.v << ‘\n‘; return ret.r; } Zi solve(ll n, int K) { n >>= 1; Zi ans = 0; Complex q1n = qpow(q1, n + 1); Complex q2n = qpow(q2, n + 1); pwqq[0][0] = Zi(1); for (int i = 0; i <= K; i++) { for (int j = (i == 0); i + j <= K; j++) { pwqq[i][j] = ((!i) ? (pwqq[i][j - 1] * q2n) : (pwqq[i - 1][j] * q1n)); } } for (int i = 1; i <= K; i++) { Zi tmp = work(n, i) * s1[K][i] * _fac[K]; if ((K - i) & 1) { ans -= tmp; } else { ans += tmp; } } return ans; } void __main__(ll l, ll r, int K) { Zi ans = solve(r, K) - solve(l - 1, K); ans = ans * ~Zi(r - l + 1); printf("%d\n", ans.v); } } int Case, ___; ll l, r; int K; int main() { prepare(502); scanf("%d%d", &Case, &___); if (___ == 3) { subtask2::init(); } else { subtask1::init(); } while (Case--) { scanf("%lld%lld%d", &l, &r, &K); if (___ == 2) { subtask1::__main__(l, r, K); } else { subtask2::__main__(l, r, K); } } return 0; }
loj 3090 「BJOI2019」勘破神機 - 數學