flink dataset api使用及原理
隨著大資料技術在各行各業的廣泛應用,要求能對海量資料進行實時處理的需求越來越多,同時資料處理的業務邏輯也越來越複雜,傳統的批處理方式和早期的流式處理框架也越來越難以在延遲性、吞吐量、容錯能力以及使用便捷性等方面滿足業務日益苛刻的要求。
在這種形勢下,新型流式處理框架Flink通過創造性地把現代大規模並行處理技術應用到流式處理中來,極大地改善了以前的流式處理框架所存在的問題。
1.概述:
flink提供DataSet Api使用者處理批量資料。flink先將接入資料轉換成DataSet資料集,並行分佈在叢集的每個節點上;然後將DataSet資料集進行各種轉換操作(map,filter等),最後通過DataSink操作將結果資料集輸出到外部系統。
2.資料接入
輸入InputFormat
/** * The base interface for data sources that produces records. * <p> * The input format handles the following: * <ul> * <li>It describes how the input is split into splits that can be processed in parallel.</li> * <li>It describes how to read records from the input split.</li> * <li>It describes how to gather basic statistics from the input.</li> * </ul> * <p> * The life cycle of an input format is the following: * <ol> * <li>After being instantiated (parameterless), it is configured with a {@link Configuration} object. * Basic fields are read from the configuration, such as a file path, if the format describes * files as input.</li> * <li>Optionally: It is called by the compiler to produce basic statistics about the input.</li> * <li>It is called to create the input splits.</li> * <li>Each parallel input task creates an instance, configures it and opens it for a specific split.</li> * <li>All records are read from the input</li> * <li>The input format is closed</li> * </ol> * <p> * IMPORTANT NOTE: Input formats must be written such that an instance can be opened again after it was closed. That * is due to the fact that the input format is used for potentially multiple splits. After a split is done, the * format's close function is invoked and, if another split is available, the open function is invoked afterwards for * the next split. * * @see InputSplit * @see BaseStatistics * * @param <OT> The type of the produced records. * @param <T> The type of input split. */
3.資料轉換
DataSet:一組相同型別的元素。DataSet可以通過transformation轉換成其它的DataSet。示例如下:
DataSet#map(org.apache.flink.api.common.functions.MapFunction) DataSet#reduce(org.apache.flink.api.common.functions.ReduceFunction) DataSet#join(DataSet) DataSet#coGroup(DataSet)
其中,Function:使用者定義的業務邏輯,支援java 8 lambda表示式
function的實現通過operator來做的,以map為例
/** * Applies a Map transformation on this DataSet. * * <p>The transformation calls a {@link org.apache.flink.api.common.functions.MapFunction} for each element of the DataSet. * Each MapFunction call returns exactly one element. * * @param mapper The MapFunction that is called for each element of the DataSet. * @return A MapOperator that represents the transformed DataSet. * * @see org.apache.flink.api.common.functions.MapFunction * @see org.apache.flink.api.common.functions.RichMapFunction * @see MapOperator */ public <R> MapOperator<T, R> map(MapFunction<T, R> mapper) { if (mapper == null) { throw new NullPointerException("Map function must not be null."); } String callLocation = Utils.getCallLocationName(); TypeInformation<R> resultType = TypeExtractor.getMapReturnTypes(mapper, getType(), callLocation, true); return new MapOperator<>(this, resultType, clean(mapper), callLocation); }
其中,Operator
4.資料輸出
DataSink:一個用來儲存資料結果的操作。
輸出OutputFormat
例如,可以csv輸出
/** * Writes a {@link Tuple} DataSet as CSV file(s) to the specified location with the specified field and line delimiters. * * <p><b>Note: Only a Tuple DataSet can written as a CSV file.</b> * For each Tuple field the result of {@link Object#toString()} is written. * * @param filePath The path pointing to the location the CSV file is written to. * @param rowDelimiter The row delimiter to separate Tuples. * @param fieldDelimiter The field delimiter to separate Tuple fields. * @param writeMode The behavior regarding existing files. Options are NO_OVERWRITE and OVERWRITE. * * @see Tuple * @see CsvOutputFormat * @see DataSet#writeAsText(String) Output files and directories */ public DataSink<T> writeAsCsv(String filePath, String rowDelimiter, String fieldDelimiter, WriteMode writeMode) { return internalWriteAsCsv(new Path(filePath), rowDelimiter, fieldDelimiter, writeMode); } @SuppressWarnings("unchecked") private <X extends Tuple> DataSink<T> internalWriteAsCsv(Path filePath, String rowDelimiter, String fieldDelimiter, WriteMode wm) { Preconditions.checkArgument(getType().isTupleType(), "The writeAsCsv() method can only be used on data sets of tuples."); CsvOutputFormat<X> of = new CsvOutputFormat<>(filePath, rowDelimiter, fieldDelimiter); if (wm != null) { of.setWriteMode(wm); } return output((OutputFormat<T>) of); }
5.總結
1. flink通過InputFormat對各種資料來源的資料進行讀取轉換成DataSet資料集
2. flink提供了豐富的轉換操作,DataSet可以通過transformation轉換成其它的DataSet,內部的實現是Function和Operator。
3. flink通過OutFormat將DataSet轉換成DataSink,最終將資料寫入到不同的儲存介質。
參考資料:
【1】https://blog.51cto.com/13654660/208