1. 程式人生 > >kube-proxy原始碼分析

kube-proxy原始碼分析

kubernetes離線安裝包,僅需三步

kube-proxy原始碼解析

ipvs相對於iptables模式具備較高的效能與穩定性, 本文講以此模式的原始碼解析為主,如果想去了解iptables模式的原理,可以去參考其實現,架構上無差別。

kube-proxy主要功能是監聽service和endpoint的事件,然後下放代理策略到機器上。 底層呼叫docker/libnetwork, 而libnetwork最終呼叫了netlink 與netns來實現ipvs的建立等動作

<!--more-->

初始化配置

程式碼入口:cmd/kube-proxy/app/server.go Run() 函式

通過命令列引數去初始化proxyServer的配置

proxyServer, err := NewProxyServer(o)
type ProxyServer struct {
    // k8s client
	Client                 clientset.Interface
	EventClient            v1core.EventsGetter

    // ipvs 相關介面
	IptInterface           utiliptables.Interface
	IpvsInterface          utilipvs.Interface
	IpsetInterface         utilipset.Interface

    // 處理同步時的處理器
	Proxier                proxy.ProxyProvider

    // 代理模式,ipvs iptables userspace kernelspace(windows)四種
	ProxyMode              string
    // 配置同步週期
	ConfigSyncPeriod       time.Duration

    // service 與 endpoint 事件處理器
	ServiceEventHandler    config.ServiceHandler
	EndpointsEventHandler  config.EndpointsHandler
}

Proxier是主要入口,抽象了兩個函式:

type ProxyProvider interface {
	// Sync immediately synchronizes the ProxyProvider's current state to iptables.
	Sync()
	// 定期執行
	SyncLoop()
}

ipvs 的interface 這個很重要:

type Interface interface {
	// 刪除所有規則
	Flush() error
	// 增加一個virtual server
	AddVirtualServer(*VirtualServer) error

	UpdateVirtualServer(*VirtualServer) error
	DeleteVirtualServer(*VirtualServer) error
	GetVirtualServer(*VirtualServer) (*VirtualServer, error)
	GetVirtualServers() ([]*VirtualServer, error)

    // 給virtual server加個realserver, 如 VirtualServer就是一個clusterip realServer就是pod(或者自定義的endpoint)
	AddRealServer(*VirtualServer, *RealServer) error
	GetRealServers(*VirtualServer) ([]*RealServer, error)
	DeleteRealServer(*VirtualServer, *RealServer) error
}

我們在下文再詳細看ipvs_linux是如何實現上面介面的

virtual server與realserver, 最重要的是ip:port,然後就是一些代理的模式如sessionAffinity等:

type VirtualServer struct {
	Address   net.IP
	Protocol  string
	Port      uint16
	Scheduler string
	Flags     ServiceFlags
	Timeout   uint32
}

type RealServer struct {
	Address net.IP
	Port    uint16
	Weight  int
}

建立apiserver client

client, eventClient, err := createClients(config.ClientConnection, master)

建立Proxier 這是僅僅關注ipvs模式的proxier

else if proxyMode == proxyModeIPVS {
		glog.V(0).Info("Using ipvs Proxier.")
		proxierIPVS, err := ipvs.NewProxier(
			iptInterface,
			ipvsInterface,
			ipsetInterface,
			utilsysctl.New(),
			execer,
			config.IPVS.SyncPeriod.Duration,
			config.IPVS.MinSyncPeriod.Duration,
			config.IPTables.MasqueradeAll,
			int(*config.IPTables.MasqueradeBit),
			config.ClusterCIDR,
			hostname,
			getNodeIP(client, hostname),
			recorder,
			healthzServer,
			config.IPVS.Scheduler,
		)
...
		proxier = proxierIPVS
		serviceEventHandler = proxierIPVS
		endpointsEventHandler = proxierIPVS

這個Proxier具備以下方法:

   +OnEndpointsAdd(endpoints *api.Endpoints)
   +OnEndpointsDelete(endpoints *api.Endpoints)
   +OnEndpointsSynced()
   +OnEndpointsUpdate(oldEndpoints, endpoints *api.Endpoints)
   +OnServiceAdd(service *api.Service)
   +OnServiceDelete(service *api.Service)
   +OnServiceSynced()
   +OnServiceUpdate(oldService, service *api.Service)
   +Sync()
   +SyncLoop()

所以ipvs的這個Proxier實現了我們需要的絕大部分介面

小結一下:

     +-----------> endpointHandler
     |
     +-----------> serviceHandler
     |                ^
     |                | +-------------> sync 定期同步等
     |                | |
ProxyServer---------> Proxier --------> service 事件回撥           
     |                  |                                                
     |                  +-------------> endpoint事件回撥          
     |                                             |  觸發
     +-----> ipvs interface ipvs handler     <-----+

啟動proxyServer

  1. 檢查是不是帶了clean up引數,如果帶了那麼清除所有規則退出
  2. OOM adjuster貌似沒實現,忽略
  3. resouceContainer也沒實現,忽略
  4. 啟動metrics伺服器,這個挺重要,比如我們想監控時可以傳入這個引數, 包含promethus的 metrics. metrics-bind-address引數
  5. 啟動informer, 開始監聽事件,分別啟動協程處理。

1 2 3 4我們都不用太關注,細看5即可:

informerFactory := informers.NewSharedInformerFactory(s.Client, s.ConfigSyncPeriod)

serviceConfig := config.NewServiceConfig(informerFactory.Core().InternalVersion().Services(), s.ConfigSyncPeriod)
// 註冊 service handler並啟動
serviceConfig.RegisterEventHandler(s.ServiceEventHandler)
// 這裡面僅僅是把ServiceEventHandler賦值給informer回撥 
go serviceConfig.Run(wait.NeverStop)

endpointsConfig := config.NewEndpointsConfig(informerFactory.Core().InternalVersion().Endpoints(), s.ConfigSyncPeriod)
// 註冊endpoint 
endpointsConfig.RegisterEventHandler(s.EndpointsEventHandler)
go endpointsConfig.Run(wait.NeverStop)

go informerFactory.Start(wait.NeverStop)

serviceConfig.Run與endpointConfig.Run僅僅是給回撥函式賦值, 所以註冊的handler就給了informer, informer監聽到事件時就會回撥:

for i := range c.eventHandlers {
	glog.V(3).Infof("Calling handler.OnServiceSynced()")
	c.eventHandlers[i].OnServiceSynced()
}

那麼問題來了,註冊進去的這個handler是啥? 回顧一下上文的

		serviceEventHandler = proxierIPVS
		endpointsEventHandler = proxierIPVS

所以都是這個proxierIPVS

handler的回撥函式, informer會回撥這幾個函式,所以我們在自己開發時實現這個interface註冊進去即可:

type ServiceHandler interface {
	// OnServiceAdd is called whenever creation of new service object
	// is observed.
	OnServiceAdd(service *api.Service)
	// OnServiceUpdate is called whenever modification of an existing
	// service object is observed.
	OnServiceUpdate(oldService, service *api.Service)
	// OnServiceDelete is called whenever deletion of an existing service
	// object is observed.
	OnServiceDelete(service *api.Service)
	// OnServiceSynced is called once all the initial even handlers were
	// called and the state is fully propagated to local cache.
	OnServiceSynced()
}

開始監聽

go informerFactory.Start(wait.NeverStop)

這裡執行後,我們建立刪除service endpoint等動作都會被監聽到,然後回撥,回顧一下上面的圖,最終都是由Proxier去實現,所以後面我們重點關注Proxier即可

s.Proxier.SyncLoop()

然後開始SyncLoop,下文開講

Proxier 實現

我們建立一個service時OnServiceAdd方法會被呼叫, 這裡記錄一下之前的狀態與當前狀態兩個東西,然後發個訊號給syncRunner讓它去處理:

func (proxier *Proxier) OnServiceAdd(service *api.Service) {
	namespacedName := types.NamespacedName{Namespace: service.Namespace, Name: service.Name}
	if proxier.serviceChanges.update(&namespacedName, nil, service) && proxier.isInitialized() {
		proxier.syncRunner.Run()
	}
}

記錄service 資訊,可以看到沒做什麼事,就是把service存在map裡, 如果沒變直接刪掉map資訊不做任何處理:

change, exists := scm.items[*namespacedName]
if !exists {
	change = &serviceChange{}
    // 老的service資訊
	change.previous = serviceToServiceMap(previous)
	scm.items[*namespacedName] = change
}
// 當前監聽到的service資訊
change.current = serviceToServiceMap(current)

如果一樣,直接刪除
if reflect.DeepEqual(change.previous, change.current) {
	delete(scm.items, *namespacedName)
}

proxier.syncRunner.Run() 裡面就傳送了一個訊號

select {
case bfr.run <- struct{}{}:
default:
}

這裡面處理了這個訊號

s.Proxier.SyncLoop()

func (proxier *Proxier) SyncLoop() {
	// Update healthz timestamp at beginning in case Sync() never succeeds.
	if proxier.healthzServer != nil {
		proxier.healthzServer.UpdateTimestamp()
	}
	proxier.syncRunner.Loop(wait.NeverStop)
}

runner裡收到訊號執行,沒收到訊號會定期執行:

func (bfr *BoundedFrequencyRunner) Loop(stop <-chan struct{}) {
	glog.V(3).Infof("%s Loop running", bfr.name)
	bfr.timer.Reset(bfr.maxInterval)
	for {
		select {
		case <-stop:
			bfr.stop()
			glog.V(3).Infof("%s Loop stopping", bfr.name)
			return
		case <-bfr.timer.C():  // 定期執行
			bfr.tryRun()
		case <-bfr.run:
			bfr.tryRun()       // 收到事件訊號執行
		}
	}
}

這個bfr runner裡我們最需要主意的是一個回撥函式,tryRun裡檢查這個回撥是否滿足被排程的條件:

type BoundedFrequencyRunner struct {
	name        string        // the name of this instance
	minInterval time.Duration // the min time between runs, modulo bursts
	maxInterval time.Duration // the max time between runs

	run chan struct{} // try an async run

	mu      sync.Mutex  // guards runs of fn and all mutations
	fn      func()      // function to run, 這個回撥
	lastRun time.Time   // time of last run
	timer   timer       // timer for deferred runs
	limiter rateLimiter // rate limiter for on-demand runs
}

// 傳入的proxier.syncProxyRules這個函式
proxier.syncRunner = async.NewBoundedFrequencyRunner("sync-runner", proxier.syncProxyRules, minSyncPeriod, syncPeriod, burstSyncs)

這是個600行左右的搓逼函式,也是處理主要邏輯的地方。

syncProxyRules

  1. 設定一些iptables規則,如mark與comment
  2. 確定機器上有網絡卡,ipvs需要繫結地址到上面
  3. 確定有ipset,ipset是iptables的擴充套件,可以給一批地址設定iptables規則 ...(又臭又長,重複程式碼多,看不下去了,細節問題自己去看吧)
  4. 我們最關注的,如何去處理VirtualServer的
serv := &utilipvs.VirtualServer{
	Address:   net.ParseIP(ingress.IP),
	Port:      uint16(svcInfo.port),
	Protocol:  string(svcInfo.protocol),
	Scheduler: proxier.ipvsScheduler,
}
if err := proxier.syncService(svcNameString, serv, false); err == nil {
	if err := proxier.syncEndpoint(svcName, svcInfo.onlyNodeLocalEndpoints, serv); err != nil {
	}
}

看下實現, 如果沒有就建立,如果已存在就更新, 給網絡卡繫結service的cluster ip:

func (proxier *Proxier) syncService(svcName string, vs *utilipvs.VirtualServer, bindAddr bool) error {
	appliedVirtualServer, _ := proxier.ipvs.GetVirtualServer(vs)
	if appliedVirtualServer == nil || !appliedVirtualServer.Equal(vs) {
		if appliedVirtualServer == nil {
			if err := proxier.ipvs.AddVirtualServer(vs); err != nil {
				return err
			}
		} else {
			if err := proxier.ipvs.UpdateVirtualServer(appliedVirtualServer); err != nil {
				return err
			}
		}
	}

	// bind service address to dummy interface even if service not changed,
	// in case that service IP was removed by other processes
	if bindAddr {
		_, err := proxier.netlinkHandle.EnsureAddressBind(vs.Address.String(), DefaultDummyDevice)
		if err != nil {
			return err
		}
	}
	return nil
}

建立service實現

現在可以去看ipvs的AddVirtualServer的實現了,主要是利用socket與核心程序通訊做到的。 pkg/util/ipvs/ipvs_linux.go 裡 runner結構體實現了這些方法, 這裡用到了 docker/libnetwork/ipvs庫:

// runner implements Interface.
type runner struct {
	exec       utilexec.Interface
	ipvsHandle *ipvs.Handle
}

// New returns a new Interface which will call ipvs APIs.
func New(exec utilexec.Interface) Interface {
	ihandle, err := ipvs.New("") // github.com/docker/libnetwork/ipvs
	if err != nil {
		glog.Errorf("IPVS interface can't be initialized, error: %v", err)
		return nil
	}
	return &runner{
		exec:       exec,
		ipvsHandle: ihandle,
	}
}

New的時候建立了一個特殊的socket, 這裡與我們普通的socket程式設計無差別,關鍵是syscall.AF_NETLINK這個引數,代表與核心程序通訊:

sock, err := nl.GetNetlinkSocketAt(n, netns.None(), syscall.NETLINK_GENERIC)

func getNetlinkSocket(protocol int) (*NetlinkSocket, error) {
	fd, err := syscall.Socket(syscall.AF_NETLINK, syscall.SOCK_RAW|syscall.SOCK_CLOEXEC, protocol)
	if err != nil {
		return nil, err
	}
	s := &NetlinkSocket{
		fd: int32(fd),
	}
	s.lsa.Family = syscall.AF_NETLINK
	if err := syscall.Bind(fd, &s.lsa); err != nil {
		syscall.Close(fd)
		return nil, err
	}

	return s, nil
}

建立一個service, 轉換成docker service格式,直接呼叫:

// AddVirtualServer is part of Interface.
func (runner *runner) AddVirtualServer(vs *VirtualServer) error {
	eSvc, err := toBackendService(vs)
	if err != nil {
		return err
	}
	return runner.ipvsHandle.NewService(eSvc)
}

然後就是把service資訊打包,往socket裡面寫即可:


func (i *Handle) doCmdwithResponse(s *Service, d *Destination, cmd uint8) ([][]byte, error) {
	req := newIPVSRequest(cmd)
	req.Seq = atomic.AddUint32(&i.seq, 1)

	if s == nil {
		req.Flags |= syscall.NLM_F_DUMP                    //Flag to dump all messages
		req.AddData(nl.NewRtAttr(ipvsCmdAttrService, nil)) //Add a dummy attribute
	} else {
		req.AddData(fillService(s))
	} // 把service塞到請求中

	if d == nil {
		if cmd == ipvsCmdGetDest {
			req.Flags |= syscall.NLM_F_DUMP
		}

	} else {
		req.AddData(fillDestinaton(d))
	}

    // 給核心程序傳送service資訊
	res, err := execute(i.sock, req, 0)
	if err != nil {
		return [][]byte{}, err
	}

	return res, nil
}

構造請求

func newIPVSRequest(cmd uint8) *nl.NetlinkRequest {
	return newGenlRequest(ipvsFamily, cmd)
}

在構造請求時傳入的是ipvs協議簇

然後構造一個與核心通訊的訊息頭

func NewNetlinkRequest(proto, flags int) *NetlinkRequest {
	return &NetlinkRequest{
		NlMsghdr: syscall.NlMsghdr{
			Len:   uint32(syscall.SizeofNlMsghdr),
			Type:  uint16(proto),
			Flags: syscall.NLM_F_REQUEST | uint16(flags),
			Seq:   atomic.AddUint32(&nextSeqNr, 1),
		},
	}
}

給訊息加Data,這個Data是個陣列,需要實現兩個方法:

type NetlinkRequestData interface {
	Len() int  // 長度
	Serialize() []byte // 序列化, 核心通訊也需要一定的資料格式,service資訊也需要實現
}

比如 header是這樣序列化的, 一看愣住了,思考好久才看懂: 拆下看: ([unsafe.Sizeof(hdr)]byte) 一個[]byte型別,長度就是結構體大小 (unsafe.Pointer(hdr))把結構體轉成byte指標型別 加個取它的值 用[:]轉成byte返回

func (hdr *genlMsgHdr) Serialize() []byte {
	return (*(*[unsafe.Sizeof(*hdr)]byte)(unsafe.Pointer(hdr)))[:]
}

傳送service資訊給核心

一個很普通的socket傳送接收資料

func execute(s *nl.NetlinkSocket, req *nl.NetlinkRequest, resType uint16) ([][]byte, error) {
	var (
		err error
	)

	if err := s.Send(req); err != nil {
		return nil, err
	}

	pid, err := s.GetPid()
	if err != nil {
		return nil, err
	}

	var res [][]byte

done:
	for {
		msgs, err := s.Receive()
		if err != nil {
			return nil, err
		}
		for _, m := range msgs {
			if m.Header.Seq != req.Seq {
				continue
			}
			if m.Header.Pid != pid {
				return nil, fmt.Errorf("Wrong pid %d, expected %d", m.Header.Pid, pid)
			}
			if m.Header.Type == syscall.NLMSG_DONE {
				break done
			}
			if m.Header.Type == syscall.NLMSG_ERROR {
				error := int32(native.Uint32(m.Data[0:4]))
				if error == 0 {
					break done
				}
				return nil, syscall.Errno(-error)
			}
			if resType != 0 && m.Header.Type != resType {
				continue
			}
			res = append(res, m.Data)
			if m.Header.Flags&syscall.NLM_F_MULTI == 0 {
				break done
			}
		}
	}
	return res, nil
}

Service 資料打包 這裡比較細,核心思想就是核心只認一定格式的標準資料,我們把service資訊按其標準打包傳送給核心即可。 至於怎麼打包的就不詳細講了。

func fillService(s *Service) nl.NetlinkRequestData {
	cmdAttr := nl.NewRtAttr(ipvsCmdAttrService, nil)
	nl.NewRtAttrChild(cmdAttr, ipvsSvcAttrAddressFamily, nl.Uint16Attr(s.AddressFamily))
	if s.FWMark != 0 {
		nl.NewRtAttrChild(cmdAttr, ipvsSvcAttrFWMark, nl.Uint32Attr(s.FWMark))
	} else {
		nl.NewRtAttrChild(cmdAttr, ipvsSvcAttrProtocol, nl.Uint16Attr(s.Protocol))
		nl.NewRtAttrChild(cmdAttr, ipvsSvcAttrAddress, rawIPData(s.Address))

		// Port needs to be in network byte order.
		portBuf := new(bytes.Buffer)
		binary.Write(portBuf, binary.BigEndian, s.Port)
		nl.NewRtAttrChild(cmdAttr, ipvsSvcAttrPort, portBuf.Bytes())
	}

	nl.NewRtAttrChild(cmdAttr, ipvsSvcAttrSchedName, nl.ZeroTerminated(s.SchedName))
	if s.PEName != "" {
		nl.NewRtAttrChild(cmdAttr, ipvsSvcAttrPEName, nl.ZeroTerminated(s.PEName))
	}
	f := &ipvsFlags{
		flags: s.Flags,
		mask:  0xFFFFFFFF,
	}
	nl.NewRtAttrChild(cmdAttr, ipvsSvcAttrFlags, f.Serialize())
	nl.NewRtAttrChild(cmdAttr, ipvsSvcAttrTimeout, nl.Uint32Attr(s.Timeout))
	nl.NewRtAttrChild(cmdAttr, ipvsSvcAttrNetmask, nl.Uint32Attr(s.Netmask))
	return cmdAttr
}

總結

Service總體來講程式碼比較簡單,但是覺得有些地方實現的有點繞,不夠簡單直接。 總體來說就是監聽apiserver事件,然後比對 處理,定期也會去執行同步策略.

掃碼關注sealyun 探討