1. 程式人生 > >opencv之霍夫曼變換

opencv之霍夫曼變換

霍夫變換不僅可以找出圖片中的直線,也可以找出圓,橢圓,三角形等等,只要你能定義出直線方程,圓形的方程等等.

不得不說,現在網上的各種部落格質量真的不行,網上一堆文章,亂TM瞎寫,誤人子弟.本身自己就沒有理解的很清楚,又不去讀演算法實現的原始碼,寫的雲山霧罩的,越看越懵逼.

霍夫變換本身的思路是很簡明的.這篇文章我們就以霍夫直線變換說明演算法的思想.

霍夫變換

思考一下,二維平面裡我們怎麼表達直線.

有兩種表達方式:

  • 直角座標系(也叫笛卡爾座標系)
  • 極座標系(也叫球座標系)

第一種就是最常見的直角座標系下的表達:y=ax+b的形式.
第二種就是極座標系下的表達:
我們把直角座標系下的直線方程用r,theta去表達直線方程的斜率和截距.


則得到極座標下的表達: r=xcosθ+ysinθ

假設影象中某畫素點座標為(x,y).在直角座標系下穿過這一點我們可以畫出無數條直線.
轉化到一個r-θ座標系下,我們就可以繪製出一條曲線.也就是r=xcosθ+ysinθ中的x,y是已知數,θ和r是未知數

這條曲線上每一個θ對應一個r,代表了一條直線.這些直線的共同點是他們都穿過了座標為(x,y)的畫素點.


針對影象中的每一個畫素點,我都可以繪製出一條曲線來表達穿過該點的無數條直線. 那曲線的交點代表什麼呢? 很顯然,代表著交點處的(θ,r)所代表的直線即穿過了畫素點A,又穿過了畫素點B,畫素點C....

怎麼樣叫做"找到圖中的一條直線"

回到我們的問題,我們想找出影象中的一條線.意味著什麼?
很多部落格說了,意味著找出一條直線,儘可能多地穿過各個畫素點.

我TM隨便在影象上畫直線,不都能穿過很多畫素點嗎?
實際上,應該是找出一條直線儘可能多地穿過"有效畫素點".這也是為什麼霍夫變換前一定要先做邊緣檢測的原因.經過canny檢測以後(不知道的參考上一篇文章),得到的影象矩陣,只有在邊緣處其畫素灰度值才是比較大的,反映在影象上就是白色亮點,在非邊緣處,其灰度值是0,反映在影象上就是黑色.這些代表了邊緣的畫素點就是有效畫素點.

即:假如我能找到這麼一條直線,穿過了很多個有效畫素點(這個就是我們需要調參的閾值),那我就說我在影象中找到了一條直線. . 同理,找圓,找三角形還是找任意形狀都是一個道理.

比方說,下面這個圖

你就找不到一條直線,穿過很多個白點.所以圖中是不存在直線的.

霍夫變換的過程

  • canny邊緣檢測提取出邊緣
  • 對邊緣影象中的每個畫素點,
    虛擬碼如下
for (every pixel)
{
    if(pixel is effective edge pixel)
    {
        for(int theta = 0; theta < 360; theta++)
        {
            r=xcosθ+ysinθ;//x,y為pixel座標
            accum(theta,r) += 1; //(theta,r)所代表的直線經過的畫素點數量加1
        }
    }
}

for(every element in accum)
{
    if (count of (theta,r) > thershold)
    {
        find line (theta,r)
    }
}

opencv示例

houghlines api


其中, double rho, double theta,決定了最終有多少種(theta,r)的組合.決定了過每個畫素點的線的可能情況.這個值越小,粒度就越細,需要的計算量也越大. 一般取rho=1,即1畫素.theta取1度.
下面是一個提取車點陣圖片中直線的示例

import sys
import math
import cv2 as cv
import numpy as np
def test():
    src = cv.imread("/home/sc/disk/keepgoing/opencv_test/houghtest.jpg")
    src = cv.GaussianBlur(src, (3, 3), 0)
    gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    
    dst = cv.Canny(src, 150, 300, None, 3)
    lines = cv.HoughLines(dst, 1, np.pi / 180, 150, None, 0, 0)
    
    # Copy edges to the images that will display the results in BGR
    cdst = cv.cvtColor(dst, cv.COLOR_GRAY2BGR)
    cdstP = np.copy(cdst)
    
    lines = cv.HoughLines(dst, 1, np.pi / 180, 200, None, 0, 0)
    
    if lines is not None:
        for i in range(0, len(lines)):
            rho = lines[i][0][0]
            theta = lines[i][0][1]
            a = math.cos(theta)
            b = math.sin(theta)
            x0 = a * rho
            y0 = b * rho
            pt1 = (int(x0 + 1000*(-b)), int(y0 + 1000*(a)))
            pt2 = (int(x0 - 1000*(-b)), int(y0 - 1000*(a)))
            cv.line(cdst, pt1, pt2, (0,0,255), 3, cv.LINE_AA)
    
    
    cv.imshow("origin",src)
    cv.imshow("dst1",dst)
    cv.imshow("dst2",cdst)
    if 27 == cv.waitKey():
        cv.destroyAllWindows()

test()

opencv原始碼解讀

opencv 官方實現

static void
HoughLinesStandard( InputArray src, OutputArray lines, int type,
                    float rho, float theta,
                    int threshold, int linesMax,
                    double min_theta, double max_theta )
{
    CV_CheckType(type, type == CV_32FC2 || type == CV_32FC3, "Internal error");

    Mat img = src.getMat();

    int i, j;
    float irho = 1 / rho;

    CV_Assert( img.type() == CV_8UC1 );
    CV_Assert( linesMax > 0 );

    const uchar* image = img.ptr();
    int step = (int)img.step;
    int width = img.cols;
    int height = img.rows;

    int max_rho = width + height;
    int min_rho = -max_rho;

    CV_CheckGE(max_theta, min_theta, "max_theta must be greater than min_theta");

    int numangle = cvRound((max_theta - min_theta) / theta);
    int numrho = cvRound(((max_rho - min_rho) + 1) / rho);

#if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH
    if (type == CV_32FC2 && CV_IPP_CHECK_COND)
    {
        IppiSize srcSize = { width, height };
        IppPointPolar delta = { rho, theta };
        IppPointPolar dstRoi[2] = {{(Ipp32f) min_rho, (Ipp32f) min_theta},{(Ipp32f) max_rho, (Ipp32f) max_theta}};
        int bufferSize;
        int nz = countNonZero(img);
        int ipp_linesMax = std::min(linesMax, nz*numangle/threshold);
        int linesCount = 0;
        std::vector<Vec2f> _lines(ipp_linesMax);
        IppStatus ok = ippiHoughLineGetSize_8u_C1R(srcSize, delta, ipp_linesMax, &bufferSize);
        Ipp8u* buffer = ippsMalloc_8u_L(bufferSize);
        if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughLine_Region_8u32f_C1R, image, step, srcSize, (IppPointPolar*) &_lines[0], dstRoi, ipp_linesMax, &linesCount, delta, threshold, buffer);};
        ippsFree(buffer);
        if (ok >= 0)
        {
            lines.create(linesCount, 1, CV_32FC2);
            Mat(linesCount, 1, CV_32FC2, &_lines[0]).copyTo(lines);
            CV_IMPL_ADD(CV_IMPL_IPP);
            return;
        }
        setIppErrorStatus();
    }
#endif


    Mat _accum = Mat::zeros( (numangle+2), (numrho+2), CV_32SC1 );
    std::vector<int> _sort_buf;
    AutoBuffer<float> _tabSin(numangle);
    AutoBuffer<float> _tabCos(numangle);
    int *accum = _accum.ptr<int>();
    float *tabSin = _tabSin.data(), *tabCos = _tabCos.data();

    // create sin and cos table
    createTrigTable( numangle, min_theta, theta,
                     irho, tabSin, tabCos);

    // stage 1. fill accumulator
    for( i = 0; i < height; i++ )
        for( j = 0; j < width; j++ )
        {
            if( image[i * step + j] != 0 )
                for(int n = 0; n < numangle; n++ )
                {
                    int r = cvRound( j * tabCos[n] + i * tabSin[n] );
                    r += (numrho - 1) / 2;
                    accum[(n+1) * (numrho+2) + r+1]++;
                }
        }

    // stage 2. find local maximums
    findLocalMaximums( numrho, numangle, threshold, accum, _sort_buf );

    // stage 3. sort the detected lines by accumulator value
    std::sort(_sort_buf.begin(), _sort_buf.end(), hough_cmp_gt(accum));

    // stage 4. store the first min(total,linesMax) lines to the output buffer
    linesMax = std::min(linesMax, (int)_sort_buf.size());
    double scale = 1./(numrho+2);

    lines.create(linesMax, 1, type);
    Mat _lines = lines.getMat();
    for( i = 0; i < linesMax; i++ )
    {
        LinePolar line;
        int idx = _sort_buf[i];
        int n = cvFloor(idx*scale) - 1;
        int r = idx - (n+1)*(numrho+2) - 1;
        line.rho = (r - (numrho - 1)*0.5f) * rho;
        line.angle = static_cast<float>(min_theta) + n * theta;
        if (type == CV_32FC2)
        {
            _lines.at<Vec2f>(i) = Vec2f(line.rho, line.angle);
        }
        else
        {
            CV_DbgAssert(type == CV_32FC3);
            _lines.at<Vec3f>(i) = Vec3f(line.rho, line.angle, (float)accum[idx]);
        }
    }
}

stage1即核心邏輯,挨個遍歷有效畫素,統計出各種(theta,r)代表的直線穿過的畫素點點的數量

Mat _accum = Mat::zeros( (numangle+2), (numrho+2), CV_32SC1 );
可以看到統計直線穿過的點數量的矩陣的個數是 (2 + numangle) x (numrho+2),即與我們傳入的double rho, double theta有關.這個值越小,相應的我們搜尋的直線數量就越多.

opencv的實現裡有一些可能是出於工程上的考慮,這點不太確定,比如這裡為什麼要(2 + numangle) x (numrho+2) 而不是 numangle x numrho

int max_rho = width + height;
int min_rho = -max_rho;

為什麼是w + h,而沒有用開平方根求對角線長度.
希望知道的朋友可以留言告訴我.

// stage 2. find local maximums

static void
findLocalMaximums( int numrho, int numangle, int threshold,
                   const int *accum, std::vector<int>& sort_buf )
{
    for(int r = 0; r < numrho; r++ )
        for(int n = 0; n < numangle; n++ )
        {
            int base = (n+1) * (numrho+2) + r+1;
            if( accum[base] > threshold &&
                accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] &&
                accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] )
                sort_buf.push_back(base);
        }
}

尋找計數的區域性最大值.類似於非極大值抑制.進一步細化檢測到的直線,把區域性的很相似的直線只取最精準的.

// stage 3. sort the detected lines by accumulator value
按accum數量大小排序

// stage 4. store the first min(total,linesMax) lines to the output buffer
儲存前n條lines到輸出Buff