JAVA8學習——從原始碼角度深入Stream流(學習過程)
阿新 • • 發佈:2020-01-05
從原始碼深入Stream /
學習的時候,官方文件是最重要的.
及其重要的內容我們不僅要知道stream用,要知道為什麼這麼用,還要知道底層是怎麼去實現的.
--個人註釋:從此看出,雖然新的jdk版本對開發人員提供了很大的遍歷,但是從底層角度來說,實現確實是非常複雜的.
--對外提供很簡單的介面使用. (一定是框架給封裝到底層了,所以你才用著簡單.)
遇到問題,能夠從底層深入解決問題.
學習一門技術的時候,先學會用,然後去挖掘深層次的內容(底層程式碼和運作方式).
引入:Example.
public class StudentTest1 { public static void main(String[] args) { Student student1 = new Student("zhangsan", 80); Student student2 = new Student("lisi", 90); Student student3 = new Student("wangwu", 100); Student student4 = new Student("zhaoliu", 90); List<Student> students = Arrays.asList(student1, student2, student3, student4); //collect()方法深入原始碼詳解 //op1:集合轉換為stream, 然後stream轉換為List List<Student> students1 = students.stream().collect(Collectors.toList()); students1.forEach(System.out::println); System.out.println("----------"); System.out.println("count: "+ students.stream().collect(counting()));//Collectors類提供的counting()方法 System.out.println("count: "+ students.stream().count()); //stream提供的方法 , 底層實現 mapToLong()->sum //當jdk底層提供有通用的方法和具體的實現方法,越具體的越好. } }
靜態匯入(直接匯入指定Java類中實現的方法)
import static java.util.stream.Collectors.*;
- collect:收集器
- Collector是一個介面,是特別重要的介面.
Collector介面原始碼解讀
題外話:雖然JDK提供了很多Collector的實現,但是很多人僅停留在使用階段.
我們這次一行一行的讀javadoc. 因為真的很重要.
/** * A <a href="package-summary.html#Reduction">mutable reduction operation</a> that * accumulates input elements into a mutable result container, optionally transforming * the accumulated result into a final representation after all input elements * have been processed. Reduction operations can be performed either sequentially * or in parallel. 一個可變的匯聚操作.將輸入元素累積到可變的結果容器當中.它會在所有元素都處理完畢後,將累積之後的結果轉換成一個最終的表示(這是一個可選操作).匯聚操作支援序列和並行兩種方式執行. --如 ArrayList:就是一個可變的容器. --支援並行操作:確保資料不會錯,執行緒可以併發.很難.另外並不是說並行一定比序列要快,因為並行是有額外開銷的. * * <p>Examples of mutable reduction operations include: * accumulating elements into a {@code Collection}; concatenating * strings using a {@code StringBuilder}; computing summary information about * elements such as sum, min, max, or average; computing "pivot table" summaries * such as "maximum valued transaction by seller", etc. The class {@link Collectors} * provides implementations of many common mutable reductions. 可變的reduction(匯聚)操作包括:將元素累積到集合當中,使用StringBuilder將字串給拼在一起,計算關於元素的sum,min,max or average等,計算資料透檢視計算:如根據銷售商獲取最大銷售額等.這個Collectors類,提供了大量的可變匯聚的實現. -- Collectors本身實際上是一個工廠. * * <p>A {@code Collector} is specified by four functions that work together to * accumulate entries into a mutable result container, and optionally perform * a final transform on the result. They are: <ul> * <li>creation of a new result container ({@link #supplier()})</li> * <li>incorporating a new data element into a result container ({@link #accumulator()})</li> * <li>combining two result containers into one ({@link #combiner()})</li> * <li>performing an optional final transform on the container ({@link #finisher()})</li> * </ul> 一個Collector是由4個函式組成的,可以對結果進行一個最終的轉化. 4個方法分別是: 1.建立一個新的接結果容器 <supplier()> new 2.將新的資料元素給合併到一個結果容器中.<accumulator()> add 3.將兩個結果容器合併成一個.<combiner()> + 4.將中間的累積型別,轉換成結果型別. <finisher()> result 每個方法都會返回一個函式式皆苦. --學習的時候,官方文件是最重要的. * * <p>Collectors also have a set of characteristics, such as * {@link Characteristics#CONCURRENT}, that provide hints that can be used by a * reduction implementation to provide better performance. Collectors 還會返回這麼一個集合 Characteristics#CONCURRENT. (也就是這個類中的列舉類) * * <p>A sequential implementation of a reduction using a collector would * create a single result container using the supplier function, and invoke the * accumulator function once for each input element. * A parallel implementation * would partition the input, create a result container for each partition, * accumulate the contents of each partition into a subresult for that partition, * and then use the combiner function to merge the subresults into a combined * result. 一個匯聚操作序列的實現,會建立一個唯一的一個結果容器.使用<Supplier>函式. 每一個輸入元素都會呼叫累積函式(accumulator())一次. 一個並行的實現,將會對輸入進行分割槽,分成多個區域,每一次分割槽都會建立一個結果容器,然後函式.累積每一個結果容器的內容區內形成一個,然後通過comtainer()給合併成一個. -- 解釋: combiner函式,假如有4個執行緒同時去執行,那麼就會生成4個部分結果. 結果分別是:1.2.3.4 可能是: 1.2 -> 5 5.3 -> 6 6.4 -> 7 這5.6.7新建立的集合,就叫做 新的結果容器 也可能是: 1.2 -> 1+2 (新的一個) 1.3 -> 1(新的一個) 這種新的摺疊後的,叫做摺疊成一個引數容器. * * <p>To ensure that sequential and parallel executions produce equivalent * results, the collector functions must satisfy an <em>identity</em> and an * <a href="package-summary.html#Associativity">associativity</a> constraints. 為了確保序列與並行獲得等價的結果. collector(收集器)的函式必須滿足2個條件. 1. identity: 同一性 2. Associativity :結合性 * * <p>The identity constraint says that for any partially accumulated result, * combining it with an empty result container must produce an equivalent * result. That is, for a partially accumulated result {@code a} that is the * result of any series of accumulator and combiner invocations, {@code a} must * be equivalent to {@code combiner.apply(a, supplier.get())}. 同一性是說:針對於任何部分累積的結果來說,將他與一個空的容器融合,必須會生成一個等價的結果.等價於部分的累積結果. 也就是說對於一個部分的累積結果a,對於任何一條線上的combiner invocations. a == combiner.apply(a, supplier.get()) supplier.get() ,獲取一個空的結果容器. 然後將a與空的結果容器容器. 保證a == (融合等式) . 這個特性就是:同一性. --部分累積的結果:是在流程中產生的中間結果. --解釋上述等式為什麼成立:a是執行緒某一個分支得到的部分結果. 後面的是呼叫BiarnyOperator.apply() (List<String> list1,List<String> list2)->{list1.addAll(list2);return list1;} 這個類似於之前說的: 將兩個結果集摺疊到同一個容器.然後返回來第一個結果的融合. * * <p>The associativity constraint says that splitting the computation must * produce an equivalent result. That is, for any input elements {@code t1} * and {@code t2}, the results {@code r1} and {@code r2} in the computation * below must be equivalent: 結合性是說:分割執行的時候,也必須產生相同的結果.每一份處理完之後,也得到相應的結果. * <pre>{@code * A a1 = supplier.get();//獲取結果容器 a1. * accumulator.accept(a1, t1); //a1:每一次累積的中間結果, t1:流中下一個待累積的元素. * accumulator.accept(a1, t2); //t1->a1, a1已經有東西. 然後 t2->t1 = r1 (也就是下一步) * R r1 = finisher.apply(a1); // result without splitting * * A a2 = supplier.get(); //另外一個執行緒 * accumulator.accept(a2, t1); //兩個結果集轉換成中間結果. * A a3 = supplier.get(); //第三個執行緒 * accumulator.accept(a3, t2); //兩個中間結果轉換成最終結果. * R r2 = finisher.apply(combiner.apply(a2, a3)); // result with splitting * } </pre> 所以要保證:無論是單執行緒,還是多執行緒(序列和並行)的結果都要是一樣的. 這就是所謂的:結合性. --個人註釋:從此看出,雖然新的jdk版本對開發人員提供了很大的遍歷,但是從底層角度來說,實現確實是非常複雜的. --對外提供很簡單的介面使用. (一定是框架給封裝到底層了,所以你才用著簡單.) * * <p>For collectors that do not have the {@code UNORDERED} characteristic, * two accumulated results {@code a1} and {@code a2} are equivalent if * {@code finisher.apply(a1).equals(finisher.apply(a2))}. For unordered * collectors, equivalence is relaxed to allow for non-equality related to * differences in order. (For example, an unordered collector that accumulated * elements to a {@code List} would consider two lists equivalent if they * contained the same elements, ignoring order.) 對於一個不包含無序的收集器來說, a1 和 a2是等價的. 條件:finisher.apply(a1).equals(finisher.apply(a2) 對於無序的收集器來說:這種等價性就沒有那麼嚴格了,它會考慮到順序上的區別所對應的不相等性. * * <p>Libraries that implement reduction based on {@code Collector}, such as * {@link Stream#collect(Collector)}, must adhere to the following constraints: 基於Collector 去實現匯聚(reduction)操作的這種庫, 必須遵守如下的約定. - 註釋:匯聚其實有多種實現. 如Collectors中的reducting(). 如Stream介面中有三種reduce()過載的方法. 這兩個有很大的本質的差別: (注意單執行緒和多執行緒情況下的影響.) reduce:要求不可變性 Collectors收集器方式:可變的結果容器. * <ul> * <li>The first argument passed to the accumulator function, both * arguments passed to the combiner function, and the argument passed to the * finisher function must be the result of a previous invocation of the * result supplier, accumulator, or combiner functions.</li> 1. 傳遞給accumulate函式的引數,以及給Combiner的兩個引數,以及finisher函式的引數, 他們必須是 這幾個supplier, accumulator, or combiner 函式函式上一次呼叫的結果(泛型-T). * <li>The implementation should not do anything with the result of any of * the result supplier, accumulator, or combiner functions other than to * pass them again to the accumulator, combiner, or finisher functions, * or return them to the caller of the reduction operation.</li> 2. 實現不應該對, 生成的 --- 結果 做任何的事情. 除了將他們再傳給下一個函式. (中間不要做任何的操作,否則肯定是紊亂的.) * <li>If a result is passed to the combiner or finisher * function, and the same object is not returned from that function, it is * never used again.</li> 3.如果一個結果被傳遞給combiner或者finisher函式,相同的物件並沒有從函式裡面返回, 那麼他們再也不會被使用了.(表示已經被用完了.) * <li>Once a result is passed to the combiner or finisher function, it * is never passed to the accumulator function again.</li> 4.一個函式如果被執行給了combiner或者finisher函式之後,它再也不會被accumulate函式呼叫了. (就是說,如果被結束函式執行完了. 就不會再被中間操作了.) * <li>For non-concurrent collectors, any result returned from the result * supplier, accumulator, or combiner functions must be serially * thread-confined. This enables collection to occur in parallel without * the {@code Collector} needing to implement any additional synchronization. * The reduction implementation must manage that the input is properly * partitioned, that partitions are processed in isolation, and combining * happens only after accumulation is complete.</li> 5. 對於非併發的收集起來說.從supplier, accumulator, or combiner任何的結果返回一定是被限定在當前的執行緒了. 所以可以被用在並行的操作了. reduction的操作必須被確保被正確的分析了,4個執行緒,被分為4個區,不會相互干擾,再都執行完畢之後,再講中間容器進行融合.形成最終結果返回. * <li>For concurrent collectors, an implementation is free to (but not * required to) implement reduction concurrently. A concurrent reduction * is one where the accumulator function is called concurrently from * multiple threads, using the same concurrently-modifiable result container, * rather than keeping the result isolated during accumulation. 6.對於併發的收集器,實現可以自由的選擇. 和上面的5相對於. 在累積階段不需要保持獨立性. * A concurrent reduction should only be applied if the collector has the * {@link Characteristics#UNORDERED} characteristics or if the * originating data is unordered.</li> 一個併發的,在這個時候一定會被使用; 無序的. --到此結束,重要的 概念基本上已經介紹完畢了. * </ul> * * <p>In addition to the predefined implementations in {@link Collectors}, the * static factory methods {@link #of(Supplier, BiConsumer, BinaryOperator, Characteristics...)} * can be used to construct collectors. For example, you could create a collector * that accumulates widgets into a {@code TreeSet} with: * * <pre>{@code * Collector<Widget, ?, TreeSet<Widget>> intoSet = * Collector.of(TreeSet::new, TreeSet::add, * (left, right) -> { left.addAll(right); return left; }); * }</pre> 使用.三個引數構造的 of 方法,() 三個引數 1.結果容器 2.將資料元素累積新增到結果容器 3.返回結果容器.(此處使用TreeSet) * * (This behavior is also implemented by the predefined collector.預定義的Collector. * {@link Collectors#toCollection(Supplier)}). * * @apiNote * Performing a reduction operation with a {@code Collector} should produce a * result equivalent to: * <pre>{@code * R container = collector.supplier().get(); * for (T t : data) * collector.accumulator().accept(container, t); * return collector.finisher().apply(container); * }</pre> 上述:匯聚容器的實現過程. 1.建立一個容器 2.累加到容器 3.返回結果容器. * * <p>However, the library is free to partition the input, perform the reduction * on the partitions, and then use the combiner function to combine the partial * results to achieve a parallel reduction. (Depending on the specific reduction * operation, this may perform better or worse, depending on the relative cost * of the accumulator and combiner functions.) 效能的好壞:取決於實際情況. (並行不一定比序列效能高.) * * <p>Collectors are designed to be <em>composed</em>; many of the methods * in {@link Collectors} are functions that take a collector and produce * a new collector. For example, given the following collector that computes * the sum of the salaries of a stream of employees: 收集器本身被設計成可以組合的. 也就是說收集器本身的組合.例如下. * * <pre>{@code * Collector<Employee, ?, Integer> summingSalaries * = Collectors.summingInt(Employee::getSalary)) * }</pre> Collector(),三個引數. * * If we wanted to create a collector to tabulate the sum of salaries by * department, we could reuse the "sum of salaries" logic using * {@link Collectors#groupingBy(Function, Collector)}: 如果想建立一個組合的容器. 就是之前用的groupingBy()的分類函式.如下例子. * * <pre>{@code * Collector<Employee, ?, Map<Department, Integer>> summingSalariesByDept * = Collectors.groupingBy(Employee::getDepartment, summingSalaries); * }</pre> 分組->求和 分組->求和 二級分組. * * @see Stream#collect(Collector) * @see Collectors * * @param <T> the type of input elements to the reduction operation * @param <A> the mutable accumulation type of the reduction operation (often * hidden as an implementation detail) * @param <R> the result type of the reduction operation * @since 1.8 */
理解到這裡,受益匪淺.
Collector介面詳解
Collector的三個泛型<T,A,R>詳解
* @param <T> the type of input elements to the reduction operation * @param <A> the mutable accumulation type of the reduction operation (often * hidden as an implementation detail) * @param <R> the result type of the reduction operatio
- T:需要被融合操作的輸入引數的型別 (也就是流中的每一個元素的型別)
- A:reduction操作的可變的累積的型別.(累積的集合的型別.)(中間結果容器的型別.)(返回結果容器的型別)
- R:匯聚操作的結果型別.
supplier()
/**
* A function that creates and returns a new mutable result container.
* 建立一個新的可變結果容器.返回 Supplier函式式介面.
* @return a function which returns a new, mutable result container
泛型 - A : 可變容器的型別.
*/
Supplier<A> supplier();
accumulator()
/**
* A function that folds a value into a mutable result container.
* 將一個新的元素資料元素摺疊(累加)到一個結果容器當中. 返回值為 BiConsumer函式式介面
* @return a function which folds a value into a mutable result container
泛型-A:返回的中間容器的型別(結果型別)
泛型-T:流中待處理的下一個元素的型別.(源型別)
*/
BiConsumer<A, T> accumulator();
combiner()
/**
和並行流緊密相關.
* A function that accepts two partial results and merges them. The
* combiner function may fold state from one argument into the other and
* return that, or may return a new result container.
* 接收兩個部分結果,然後給合併起來.將結果狀態從一個引數轉換成另一個引數,或者返回一個新的結果容器....*(有點難理解.) 返回一個組合的操作符函式介面類.
-- 解釋:
combiner函式,假如有4個執行緒同時去執行,那麼就會生成4個部分結果.
結果分別是:1.2.3.4
可能是:
1.2 -> 5
5.3 -> 6
6.4 -> 7
這5.6.7新建立的集合,就叫做 新的結果容器
也可能是:
1.2 -> 1+2 (新的一個)
1.3 -> 1(新的一個)
這種新的摺疊後的,叫做摺疊成一個引數容器.
所以:combiner 是 專門用在 並行流中的.
* @return a function which combines two partial results into a combined
* result
泛型-A: (結果容器型別.中間結果容器的型別.) TTT
*/
BinaryOperator<A> combiner();
finisher()
/**
* Perform the final transformation from the intermediate accumulation type
* {@code A} to the final result type {@code R}.
*接收一箇中間物件,返回另外一個結果.物件.
* <p>If the characteristic {@code IDENTITY_TRANSFORM} is
* set, this function may be presumed to be an identity transform with an
* unchecked cast from {@code A} to {@code R}.
*如果這個特性被設定值了的話,..... 返回一個Function介面型別.
* @return a function which transforms the intermediate result to the final
* result
泛型-A :結果容器型別
泛型-R : 最終要使用的型別.(最終返回的結果的型別.)
*/
Function<A, R> finisher();
列舉類 Characteristics
/**
* Characteristics indicating properties of a {@code Collector}, which can
* be used to optimize reduction implementations.
這個類中顯示的這些屬性,被用作:優化匯聚的實現.
--解釋: 類的作用:告訴收集器,我可以對這個目標進行怎麼樣的執行動作.
*/
enum Characteristics {
/**
* Indicates that this collector is <em>concurrent</em>, meaning that
* the result container can support the accumulator function being
* called concurrently with the same result container from multiple
* threads.
*
* <p>If a {@code CONCURRENT} collector is not also {@code UNORDERED},
* then it should only be evaluated concurrently if applied to an
* unordered data source.
*/
CONCURRENT,//表示可以支援併發.
/**
* Indicates that the collection operation does not commit to preserving
* the encounter order of input elements. (This might be true if the
* result container has no intrinsic order, such as a {@link Set}.)
*/
UNORDERED,
/**
* Indicates that the finisher function is the identity function and
* can be elided. If set, it must be the case that an unchecked cast
* from A to R will succeed.
*/
IDENTITY_FINISH
}