C#實踐設計模式原則SOLID
理論跟實踐的關係,說遠不遠,說近不近。能不能把理論用到實踐上,還真不好說。
通常講到設計模式,一個最通用的原則是SOLID:
- S - Single Responsibility Principle,單一責任原則
- O - Open Closed Principle,開閉原則
- L - Liskov Substitution Principle,里氏替換原則
- I - Interface Segregation Principle,介面隔離原則
- D - Dependency Inversion Principle,依賴倒置原則
嗯,這就是五大原則。
後來又加入了一個:Law of Demeter,迪米特法則。於是,就變成了六大原則。
原則好理解。怎麼用在實踐中?
為了防止不提供原網址的轉載,特在這裡加上原文連結:https://www.cnblogs.com/tiger-wang/p/13525841.html
一、單一責任原則
單一責任原則,簡單來說就是一個類或一個模組,只負責一種或一類職責。
看程式碼:
public interface IUser
{
void AddUser();
void RemoveUser();
void UpdateUser();
void Logger();
void Message();
}
根據原則,我們會發現,對於IUser
來說,前三個方法:AddUser
、RemoveUser
、UpdateUser
是有意義的,而後兩個Logger
和Message
作為IUser
的一部分功能,是沒有意義的並不符合單一責任原則的。
所以,我們可以把它分解成不同的介面:
public interface IUser
{
void AddUser();
void RemoveUser();
void UpdateUser();
}
public interface ILog
{
void Logger();
}
public interface IMessage
{
void Message();
}
拆分後,我們看到,三個介面各自完成自己的責任,可讀性和可維護性都很好。
下面是使用的例子,採用依賴注入來做:
public class Log : ILog
{
public void Logger()
{
Console.WriteLine("Logged Error");
}
}
public class Msg : IMessage
{
public void Message()
{
Console.WriteLine("Messaged Sent");
}
}
class Class_DI
{
private readonly IUser _user;
private readonly ILog _log;
private readonly IMessage _msg;
public Class_DI(IUser user, ILog log, IMessage msg)
{
this._user = user;
this._log = log;
this._msg = msg;
}
public void User()
{
this._user.AddUser();
this._user.RemoveUser();
this._user.UpdateUser();
}
public void Log()
{
this._log.Logger();
}
public void Msg()
{
this._msg.Message();
}
}
public static void Main()
{
Class_DI di = new Class_DI(new User(), new Log(), new Msg());
di.User();
di.Log();
di.Msg();
}
這樣的程式碼,看著就漂亮多了。
二、開閉原則
開閉原則要求類、模組、函式等實體應該對擴充套件開放,對修改關閉。
我們先來看一段程式碼,計算員工的獎金:
public class Employee
{
public int Employee_ID;
public string Name;
public Employee(int id, string name)
{
this.Employee_ID = id;
this.Name = name;
}
public decimal Bonus(decimal salary)
{
return salary * .2M;
}
}
class Program
{
static void Main(string[] args)
{
Employee emp = new Employee(101, "WangPlus");
Console.WriteLine("Employee ID: {0} Name: {1} Bonus: {2}", emp.Employee_ID, emp.Name, emp.Bonus(10000));
}
}
現在假設,計算獎金的公式做了改動。
要實現這個,我們可能需要對程式碼進行修改:
public class Employee
{
public int Employee_ID;
public string Name;
public string Employee_Type;
public Employee(int id, string name, string type)
{
this.Employee_ID = id;
this.Name = name;
this.Employee_Type = type;
}
public decimal Bonus(decimal salary)
{
if (Employee_Type == "manager")
return salary * .2M;
else
return
salary * .1M;
}
}
顯然,為了實現改動,我們修改了類和方法。
這違背了開閉原則。
那我們該怎麼做?
我們可以用抽象類來實現 - 當然,實際有很多實現方式,選擇最習慣或自然的方式就成:
public abstract class Employee
{
public int Employee_ID;
public string Name;
public Employee(int id, string name)
{
this.Employee_ID = id;
this.Name = name;
}
public abstract decimal Bonus(decimal salary);
}
然後,我們再實現最初的功能:
public class GeneralEmployee : Employee
{
public GeneralEmployee(int id, string name) : base(id, name)
{
}
public override decimal Bonus(decimal salary)
{
return salary * .2M;
}
}
class Program
{
public static void Main()
{
Employee emp = new GeneralEmployee(101, "WangPlus");
Console.WriteLine("Employee ID: {0} Name: {1} Bonus: {2}", emp.Employee_ID, emp.Name, emp.Bonus(10000));
}
}
在這兒使用抽象類的好處是:如果未來需要修改獎金規則,則不需要像前邊例子一樣,修改整個類和方法,因為現在的擴充套件是開放的。
程式碼寫完整了是這樣:
public abstract class Employee
{
public int Employee_ID;
public string Name;
public Employee(int id, string name)
{
this.Employee_ID = id;
this.Name = name;
}
public abstract decimal Bonus(decimal salary);
}
public class GeneralEmployee : Employee
{
public GeneralEmployee(int id, string name) : base(id, name)
{
}
public override decimal Bonus(decimal salary)
{
return salary * .1M;
}
}
public class ManagerEmployee : Employee
{
public ManagerEmployee(int id, string name) : base(id, name)
{
}
public override decimal Bonus(decimal salary)
{
return salary * .2M;
}
}
class Program
{
public static void Main()
{
Employee emp = new GeneralEmployee(101, "WangPlus");
Employee emp1 = new ManagerEmployee(102, "WangPlus1");
Console.WriteLine("Employee ID: {0} Name: {1} Bonus: {2}", emp.Employee_ID, emp.Name, emp.Bonus(10000));
Console.WriteLine("Employee ID: {0} Name: {1} Bonus: {2}", emp1.Employee_ID, emp1.Name, emp1.Bonus(10000));
}
}
三、里氏替換原則
里氏替換原則,講的是:子類可以擴充套件父類的功能,但不能改變基類原有的功能。它有四層含義:
- 子類可以實現父類的抽象方法,但不能覆蓋父類的非抽象方法;
- 子類中可以增加自己的特有方法;
- 當子類過載父類的方法時,方法的前置條件(形參)要比父類的輸入引數更寬鬆;
- 當子類實現父類的抽象方法時,方法的後置條件(返回值)要比父類更嚴格。
在前邊開閉原則中,我們的例子裡,實際上也遵循了部分里氏替換原則,我們用GeneralEmployee
和ManagerEmployee
替換了父類Employee
。
還是拿程式碼來說。
假設需求又改了,這回加了一個臨時工,是沒有獎金的。
public class TempEmployee : Employee
{
public TempEmployee(int id, string name) : base(id, name)
{
}
public override decimal Bonus(decimal salary)
{
throw new NotImplementedException();
}
}
class Program
{
public static void Main()
{
Employee emp = new GeneralEmployee(101, "WangPlus");
Employee emp1 = new ManagerEmployee(101, "WangPlus1");
Employee emp2 = new TempEmployee(102, "WangPlus2");
Console.WriteLine("Employee ID: {0} Name: {1} Bonus: {2}", emp.Employee_ID, emp.Name, emp.Bonus(10000));
Console.WriteLine("Employee ID: {0} Name: {1} Bonus: {2}", emp1.Employee_ID, emp1.Name, emp1.Bonus(10000));
Console.WriteLine("Employee ID: {0} Name: {1} Bonus: {2}", emp2.Employee_ID, emp2.Name, emp2.Bonus(10000));
Console.ReadLine();
}
}
顯然,這個方式不符合里氏替原則的第四條,它丟擲了一個錯誤。
所以,我們需要繼續修改程式碼,並增加兩個介面:
interface IBonus
{
decimal Bonus(decimal salary);
}
interface IEmployee
{
int Employee_ID { get; set; }
string Name { get; set; }
decimal GetSalary();
}
public abstract class Employee : IEmployee, IBonus
{
public int Employee_ID { get; set; }
public string Name { get; set; }
public Employee(int id, string name)
{
this.Employee_ID = id;
this.Name = name;
}
public abstract decimal GetSalary();
public abstract decimal Bonus(decimal salary);
}
public class GeneralEmployee : Employee
{
public GeneralEmployee(int id, string name) : base(id, name)
{
}
public override decimal GetSalary()
{
return 10000;
}
public override decimal Bonus(decimal salary)
{
return salary * .1M;
}
}
public class ManagerEmployee : Employee
{
public ManagerEmployee(int id, string name) : base(id, name)
{
}
public override decimal GetSalary()
{
return 10000;
}
public override decimal Bonus(decimal salary)
{
return salary * .1M;
}
}
public class TempEmployee : IEmployee
{
public int Employee_ID { get; set; }
public string Name { get; set; }
public TempEmployee(int id, string name)
{
this.Employee_ID = id;
this.Name = name;
}
public decimal GetSalary()
{
return 5000;
}
}
class Program
{
public static void Main()
{
Employee emp = new GeneralEmployee(101, "WangPlus");
Employee emp1 = new ManagerEmployee(102, "WangPlus1");
Console.WriteLine("Employee ID: {0} Name: {1} Salary: {2} Bonus:{3}", emp.Employee_ID, emp.Name, emp.GetSalary(), emp.Bonus(emp.GetSalary()));
Console.WriteLine("Employee ID: {0} Name: {1} Salary: {2} Bonus:{3}", emp1.Employee_ID, emp1.Name, emp1.GetSalary(), emp1.Bonus(emp1.GetSalary()));
List<IEmployee> emp_list = new List<IEmployee>();
emp_list.Add(new GeneralEmployee(101, "WangPlus"));
emp_list.Add(new ManagerEmployee(102, "WangPlus1"));
emp_list.Add(new TempEmployee(103, "WangPlus2"));
foreach (var obj in emp_list)
{
Console.WriteLine("Employee ID: {0} Name: {1} Salary: {2} ", obj.EmpId, obj.Name, obj.GetSalary());
}
}
}
四、介面隔離原則
介面隔離原則要求客戶不依賴於它不使用的介面和方法;一個類對另一個類的依賴應該建立在最小的介面上。
通常的做法,是把一個臃腫的介面拆分成多個更小的介面,以保證客戶只需要知道與它相關的方法。
這個部分不做程式碼演示了,可以去看看上邊單一責任原則裡的程式碼,也遵循了這個原則。
五、依賴倒置原則
依賴倒置原則要求高層模組不能依賴於低層模組,而是兩者都依賴於抽象。另外,抽象不應該依賴於細節,而細節應該依賴於抽象。
看程式碼:
public class Message
{
public void SendMessage()
{
Console.WriteLine("Message Sent");
}
}
public class Notification
{
private Message _msg;
public Notification()
{
_msg = new Message();
}
public void PromotionalNotification()
{
_msg.SendMessage();
}
}
class Program
{
public static void Main()
{
Notification notify = new Notification();
notify.PromotionalNotification();
}
}
這個程式碼中,通知完全依賴Message
類,而Message
類只能傳送一種通知。如果我們需要引入別的型別,例如郵件和SMS,則需要修改Message
類。
下面,我們使用依賴倒置原則來完成這段程式碼:
public interface IMessage
{
void SendMessage();
}
public class Email : IMessage
{
public void SendMessage()
{
Console.WriteLine("Send Email");
}
}
public class SMS : IMessage
{
public void SendMessage()
{
Console.WriteLine("Send Sms");
}
}
public class Notification
{
private IMessage _msg;
public Notification(IMessage msg)
{
this._msg = msg;
}
public void Notify()
{
_msg.SendMessage();
}
}
class Program
{
public static void Main()
{
Email email = new Email();
Notification notify = new Notification(email);
notify.Notify();
SMS sms = new SMS();
notify = new Notification(sms);
notify.Notify();
}
}
通過這種方式,我們把程式碼之間的耦合降到了最小。
六、迪米特法則
迪米特法則也叫最少知道法則。從稱呼就可以知道,意思是:一個物件應該對其它物件有最少的瞭解。
在寫程式碼的時候,儘可能少暴露自己的介面或方法。寫類的時候,能不public
就不public
,所有暴露的屬性、介面、方法,都是不得不暴露的,這樣能確保其它類對這個類有最小的瞭解。
這個原則沒什麼需要多講的,呼叫者只需要知道被呼叫者公開的方法就好了,至於它內部是怎麼實現的或是有其他別的方法,呼叫者並不關心,呼叫者只關心它需要用的。反而,如果被呼叫者暴露太多不需要暴露的屬性或方法,那麼就可能導致呼叫者濫用其中的方法,或是引起一些其他不必要的麻煩。
最後說兩句:所謂原則,不是規則,不是硬性的規定。在程式碼中,能靈活應用就好,不需要非拘泥於形式,但是,用好了,會讓程式碼寫得很順手,很漂亮。
(全文完)
微信公眾號:老王Plus 掃描二維碼,關注個人公眾號,可以第一時間得到最新的個人文章和內容推送 本文版權歸作者所有,轉載請保留此宣告和原文連結 |