1. 程式人生 > 其它 >Spark/Scala在推薦系統中實現相似度演算法(歐氏距離、皮爾遜相關係數、餘弦相似度:帶實現程式碼)

Spark/Scala在推薦系統中實現相似度演算法(歐氏距離、皮爾遜相關係數、餘弦相似度:帶實現程式碼)

技術標籤:pythonpython

在推薦系統中,協同過濾演算法被廣泛使用,主要分為基於使用者和基於專案的協同過濾演算法。核心點基於“一個人”或者“一個物品”。根據這個人或者物品的屬性,比如性別、年齡、工作、收入、喜好等。,找到與此人或物品相似的人或物。當然,實際處理中的參考因素會複雜得多。

本文不介紹相關的數學概念,主要給出常用相似度演算法的程式碼實現,同樣的演算法有多種實現方式。
歐幾里得距離

def euclidean2(v1: Vector, v2: Vector): Double = {
    require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)"
+ s"=${v2.size}.") val x = v1.toArray val y = v2.toArray euclidean(x, y) } def euclidean(x: Array[Double], y: Array[Double]): Double = { require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" + s"=${y.length}."
) math.sqrt(x.zip(y).map(p => p._1 - p._2).map(d => d * d).sum) } def euclidean(v1: Vector, v2: Vector): Double = { val sqdist = Vectors.sqdist(v1, v2) math.sqrt(sqdist) }

皮爾遜相關係數

def pearsonCorrelationSimilarity(arr1: Array[Double], arr2: Array[Double]): Double = {
    require(
arr1.length == arr2.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${arr1.length} and Len(y)" + s"=${arr2.length}.") val sum_vec1 = arr1.sum val sum_vec2 = arr2.sum val square_sum_vec1 = arr1.map(x => x * x).sum val square_sum_vec2 = arr2.map(x => x * x).sum val zipVec = arr1.zip(arr2) val product = zipVec.map(x => x._1 * x._2).sum val numerator = product - (sum_vec1 * sum_vec2 / arr1.length) val dominator = math.pow((square_sum_vec1 - math.pow(sum_vec1, 2) / arr1.length) * (square_sum_vec2 - math.pow(sum_vec2, 2) / arr2.length), 0.5) if (dominator == 0) Double.NaN else numerator / (dominator * 1.0) }

餘弦相似性

  def cosineSimilarity(v1: DoubleMatrix, v2: DoubleMatrix): Double = {
    require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(v1)=${x.length} and Len(v2)" +
      s"=${y.length}.")
      
    v1.dot(v2) / (v1.norm2() * v2.norm2())
  }
  
def cosineSimilarity(v1: Vector, v2: Vector): Double = {
    require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
      s"=${v2.size}.")

    val x = v1.toArray
    val y = v2.toArray

    cosineSimilarity(x, y)
  }

  
  def cosineSimilarity(x: Array[Double], y: Array[Double]): Double = {
    require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
      s"=${y.length}.")

    val member = x.zip(y).map(d => d._1 * d._2).sum
   
    val temp1 = math.sqrt(x.map(math.pow(_, 2)).sum)
    val temp2 = math.sqrt(y.map(math.pow(_, 2)).sum)

    val denominator = temp1 * temp2
    if (denominator == 0) Double.NaN else member / (denominator * 1.0)
  }

修正餘弦相似性

def adjustedCosineSimJblas(x: DoubleMatrix, y: DoubleMatrix): Double = {
    require(x.length == y.length, s"SimilarityAlgorithms:DoubleMatrix length do not match: Len(x)=${x.length} and Len(y)" +
      s"=${y.length}.")

    val avg = (x.sum() + y.sum()) / (x.length + y.length)
    val v1 = x.sub(avg)
    val v2 = y.sub(avg)
    v1.dot(v2) / (v1.norm2() * v2.norm2())
  }

 
  def adjustedCosineSimJblas(x: Array[Double], y: Array[Double]): Double = {
    require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
      s"=${y.length}.")

    val v1 = new DoubleMatrix(x)
    val v2 = new DoubleMatrix(y)

    adjustedCosineSimJblas(v1, v2)
  }
  
  def adjustedCosineSimilarity(v1: Vector, v2: Vector): Double = {
    require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
      s"=${v2.size}.")
    val x = v1.toArray
    val y = v2.toArray

    adjustedCosineSimilarity(x, y)
  }

  def adjustedCosineSimilarity(x: Array[Double], y: Array[Double]): Double = {
    require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
      s"=${y.length}.")

    val avg = (x.sum + y.sum) / (x.length + y.length)

    val member = x.map(_ - avg).zip(y.map(_ - avg)).map(d => d._1 * d._2).sum

    val temp1 = math.sqrt(x.map(num => math.pow(num - avg, 2)).sum)
    val temp2 = math.sqrt(y.map(num => math.pow(num - avg, 2)).sum)

    val denominator = temp1 * temp2
    if (denominator == 0) Double.NaN else member / (denominator * 1.0)
  }

如果在實際業務處理中有相關需求,可以根據實際場景對上述程式碼進行優化或轉換。當然,很多演算法框架提供的一些演算法封裝了這些相似度演算法,底層還是依賴於這個集合,可以幫助你有更好的理解。比如Spark MLlib在KMeans演算法中實現,歐氏距離在底部計算。