Keras 利用sklearn的ROC-AUC建立評價函式詳解
阿新 • • 發佈:2020-06-16
我就廢話不多說了,大家還是直接看程式碼吧!
# 利用sklearn自建評價函式 from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score from keras.callbacks import Callback class RocAucEvaluation(Callback): def __init__(self,validation_data=(),interval=1): super(Callback,self).__init__() self.interval = interval self.x_val,self.y_val = validation_data def on_epoch_end(self,epoch,log={}): if epoch % self.interval == 0: y_pred = self.model.predict(self.x_val,verbose=0) score = roc_auc_score(self.y_val,y_pred) print('\n ROC_AUC - epoch:%d - score:%.6f \n' % (epoch+1,score)) x_train,y_train,x_label,y_label = train_test_split(train_feature,train_label,train_size=0.95,random_state=233) RocAuc = RocAucEvaluation(validation_data=(y_train,y_label),interval=1) hist = model.fit(x_train,batch_size=batch_size,epochs=epochs,validation_data=(y_train,callbacks=[RocAuc],verbose=2)
補充知識:keras用auc做metrics以及早停
我就廢話不多說了,大家還是直接看程式碼吧!
import tensorflow as tf from sklearn.metrics import roc_auc_score def auroc(y_true,y_pred): return tf.py_func(roc_auc_score,(y_true,y_pred),tf.double) # Build Model... model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy',auroc])
完整例子:
def auc(y_true,y_pred): auc = tf.metrics.auc(y_true,y_pred)[1] K.get_session().run(tf.local_variables_initializer()) return auc def create_model_nn(in_dim,layer_size=200): model = Sequential() model.add(Dense(layer_size,input_dim=in_dim,kernel_initializer='normal')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.3)) for i in range(2): model.add(Dense(layer_size)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.3)) model.add(Dense(1,activation='sigmoid')) adam = optimizers.Adam(lr=0.01) model.compile(optimizer=adam,loss='binary_crossentropy',metrics = [auc]) return model ####cv train folds = StratifiedKFold(n_splits=5,shuffle=False,random_state=15) oof = np.zeros(len(df_train)) predictions = np.zeros(len(df_test)) for fold_,(trn_idx,val_idx) in enumerate(folds.split(df_train.values,target2.values)): print("fold n°{}".format(fold_)) X_train = df_train.iloc[trn_idx][features] y_train = target2.iloc[trn_idx] X_valid = df_train.iloc[val_idx][features] y_valid = target2.iloc[val_idx] model_nn = create_model_nn(X_train.shape[1]) callback = EarlyStopping(monitor="val_auc",patience=50,verbose=0,mode='max') history = model_nn.fit(X_train,validation_data = (X_valid,y_valid),epochs=1000,batch_size=64,callbacks=[callback]) print('\n Validation Max score : {}'.format(np.max(history.history['val_auc']))) predictions += model_nn.predict(df_test[features]).ravel()/folds.n_splits
以上這篇Keras 利用sklearn的ROC-AUC建立評價函式詳解就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支援我們。