1. 程式人生 > 其它 >異面直線最小距離

異面直線最小距離

如圖,在正方體 \(ABCD-A_1B_1C_1D_1\) 中,\(M,N\) 分別是稜 \(AB,BB_1\) 的中點,點 \(P\) 在對角線 \(CA_1\) 上運動. 當 \(\triangle PMN\) 的面積最小時,點 \(P\) 的位置是 \((\qquad)\)

A. 線段 \(CA_1\) 的三等分點,且靠近 \(A_1\)

B. 線段 \(CA_1\) 的中點

C. 線段 \(CA_1\) 的三等分點,且靠近點 \(C\)

D. 線段 \(CA_1\) 的四等分點,且靠近點 \(C\)

解析:

要使 \(\triangle PMN\) 的面積最小,則需點 \(P\) 到直線 \(MN\)

的距離最小,即求異面直線 \(MN\)\(A_1C\) 的最小距離。如圖

連線 \(A_1B\)\(MN\) 於點 \(Q\) ,過點 \(Q\)\(QP'\perp A_1C\) ,交 \(A_1C\) 於點 \(P'\) ,因為 \(MN\perp A_1B\)\(MN\perp BC\) ,所以 \(MN\perp\) 平面 \(A_1BC\) ,所以 \(MN\perp QP'\) ,又 \(QP'\perp A_1C\) ,所以 \(|QP'|\) 為異面直線 \(MN,A_1C\) 之間的最小距離。設正方體稜長為 \(1\) ,求得

\[A_1B=\sqrt{2},A_1Q=\dfrac{3}{4}\sqrt{2},A_1C=\sqrt{3} \]

易知 \(\triangle A_1QP'\sim\triangle A_1CB\)

,設 \(|A_1P'|=x\) ,則

\[\dfrac{|A_1P'|}{|A_1B|}=\dfrac{|A_1Q|}{|A_1C|}\Longrightarrow \dfrac{x}{\sqrt{2}}=\dfrac{\dfrac{3}{4}\sqrt2}{\sqrt3} \]

解得 \(x=\dfrac{\sqrt3}{2}\) ,所以當點 \(P\) 在點 \(P'\) 處(即 \(A_1C\) 中點)時,\(\triangle PMN\) 的面積最小.

答案:B