1. 程式人生 > 其它 >Solution -「多校聯訓」古老的序列問題

Solution -「多校聯訓」古老的序列問題

\(\mathcal{Description}\)

  Link.

  給定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的詢問,每次回答

\[\sum_{[l,r]\subseteq [L,R]}\min_{i=l}^r\{a_i\}\cdot\max_{i=l}^r\{a_i\}\pmod{10^9+7}. \]

  \(n,q\le10^5\)

\(\mathcal{Solution}\)

  瞬間聯想到 這道題,嘗試把詢問掛到貓樹上分治處理。對於分治區間 \([l,r]\),令其中點為 \(p\),考慮離線處理掛在它身上的詢問。

  而此時,我們需要用掃描線進行進一步轉化:左端點 \(i\)

\(p\)\(l\) 掃描,維護 \(j=p+1..r\) 的答案。考慮 \(i\) 確定時,\(j\in(p,r]\) 形成的 \([i,j]\) 的權值有以下四種:

  • 最小值、最大值在 \([i,p]\)
  • 最小值在 \([i,p]\),最大值在 \((p,r]\)
  • 最大值在 \([i,p]\),最小值在 \((p,r]\)
  • 最小值、最大值在 \((p,r]\)

  簡直和上面那題一模一樣呢。發現貢獻無非是左邊的最小/最大值等形式的係數乘上右邊相同形式的係數,詢問時即求右邊貢獻的字首和。可以用四科線段樹維護四種類型的貢獻。複雜度 \(\mathcal O((q+n\log n)\log n)\)

  Ummm... 有 \(\mathcal O(n\log n)\) 的做法,大概是隻用掃描線,然後矩陣線段樹維護歷史和,見 祂的部落格

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )

inline char fgc() {
	static char buf[1 << 17], *p = buf, *q = buf;
	return p == q && ( q = buf + fread( p = buf, 1, 1 << 17, stdin ), p == q )
	  ? EOF : *p++;
}

inline int rint() {
	int x = 0, s = fgc();
	for ( ; s < '0' || '9' < s; s = fgc() );
	for ( ; '0' <= s && s <= '9'; s = fgc() ) x = x * 10 + ( s ^ '0' );
	return x;
}

inline void wint( const int x ) {
	if ( 9 < x ) wint( x / 10 );
	putchar( x % 10 ^ '0' );
}

const int MAXN = 1e5, MOD = 1e9 + 7;
int n, q, a[MAXN + 5], ans[MAXN + 5];

inline int imin( const int u, const int v ) { return u < v ? u : v; }
inline int imax( const int u, const int v ) { return u < v ? v : u; }
inline int mul( const int u, const int v ) { return 1ll * u * v % MOD; }
inline int add( int u, const int v ) { return ( u += v ) < MOD ? u : u - MOD; }
inline void addeq( int& u, const int v ) { ( u += v ) >= MOD && ( u -= MOD ); }

struct Atom {
	int l, r, id;
	inline bool operator < ( const Atom& t ) const { return l < t.l; }
};
std::vector<Atom> qbuc[MAXN << 2];
int all[MAXN << 2];

inline void hang( const int u, const int l, const int r,
  const int ql, const int qr, const int qid ) {
	if ( ql <= l && r <= qr ) return qbuc[u].push_back( { l, r, qid } );
	int mid = l + r >> 1;
	if ( qr <= mid ) hang( u << 1, l, mid, ql, qr, qid );
	else if ( mid < ql ) hang( u << 1 | 1, mid + 1, r, ql, qr, qid );
	else {
		qbuc[u].push_back( { ql, qr, qid } );
		hang( u << 1, l, mid, ql, mid, qid );
		hang( u << 1 | 1, mid + 1, r, mid + 1, qr, qid );
	}
}

struct SegmentTree { // how to replace it with BIT?
	int sum[MAXN << 2], coe[MAXN << 2], tag[MAXN << 2];
	
	inline void pushad( const int u, const int v ) {
		addeq( tag[u], v ), addeq( sum[u], mul( coe[u], v ) );
	}
	
	inline void pushdn( const int u ) {
		if ( tag[u] ) {
			pushad( u << 1, tag[u] ), pushad( u << 1 | 1, tag[u] );
			tag[u] = 0;
		}
	}
	
	inline void pushup( const int u ) {
		sum[u] = add( sum[u << 1], sum[u << 1 | 1] );
	}
	
	inline void build( const int u, const int l, const int r, const int* c ) {
		sum[u] = tag[u] = 0;
		if ( l == r ) return void( coe[u] = c == NULL ? 1 : c[l] );
		int mid = l + r >> 1;
		build( u << 1, l, mid, c ), build( u << 1 | 1, mid + 1, r, c );
		coe[u] = add( coe[u << 1], coe[u << 1 | 1] );
	}
	
	inline void modify( const int u, const int l, const int r,
	  const int ml, const int mr, const int v ) {
//	  	if ( l > r ) return ; // well, I'll promise it.
		if ( ml <= l && r <= mr ) return pushad( u, v );
		int mid = l + r >> 1; pushdn( u );
		if ( ml <= mid ) modify( u << 1, l, mid, ml, mr, v );
		if ( mid < mr ) modify( u << 1 | 1, mid + 1, r, ml, mr, v );
		pushup( u );
	}
	
	inline int query( const int u, const int l, const int r,
	  const int ql, const int qr ) {
	  	if ( ql <= l && r <= qr ) return sum[u];
	  	int mid = l + r >> 1, ret = 0; pushdn( u );
	  	if ( ql <= mid ) addeq( ret, query( u << 1, l, mid, ql, qr ) );
	  	if ( mid < qr ) addeq( ret, query( u << 1 | 1, mid + 1, r, ql, qr ) );
	  	return ret;
	}
} sgt[4];

inline void solve( const int u, const int l, const int r ) {
  	/* bound check and divide down. */
	auto& qry( qbuc[u] );
	if ( l == r ) {
		all[u] = mul( a[l], a[l] );
		for ( const auto& x: qry ) addeq( ans[x.id], all[u] );
		return ;
	}
	int mid = l + r >> 1;
	solve( u << 1, l, mid ), solve( u << 1 | 1, mid + 1, r );
	all[u] = add( all[u << 1], all[u << 1 | 1] );
	
	/* initialize some information. */
	static int x[MAXN + 5], y[MAXN + 5], xy[MAXN + 5]; // x->min, y->max.
	x[mid] = y[mid] = a[mid];
	per ( i, mid - 1, l ) {
		x[i] = imin( a[i], x[i + 1] ), y[i] = imax( a[i], y[i + 1] );
	}
	x[mid + 1] = y[mid + 1] = a[mid + 1];
	rep ( i, mid + 2, r ) {
		x[i] = imin( a[i], x[i - 1] ), y[i] = imax( a[i], y[i - 1] );
	}
	rep ( i, l, r ) xy[i] = mul( x[i], y[i] );
#define R 1, 1, r - mid
	sgt[0].build( R, NULL );
	sgt[1].build( R, x + mid );
	sgt[2].build( R, y + mid );
	sgt[3].build( R, xy + mid );
	
	/* finally begin to solve queries. */
	std::sort( qry.begin(), qry.end() );
	for ( int i = mid, j = int( qry.size() ) - 1,
	  px = mid + 1, py = mid + 1; i >= l; --i ) {
		while ( px <= r && x[i] <= x[px] ) ++px;
		while ( py <= r && y[i] >= y[py] ) ++py;
		int pl = imin( px, py ), pr = imax( px, py );
		if ( mid + 1 < pl ) sgt[0].modify( R, 1, pl - mid - 1, xy[i] );
		if ( px < py ) sgt[1].modify( R, px - mid, py - mid - 1, y[i] );
		if ( py < px ) sgt[2].modify( R, py - mid, px - mid - 1, x[i] );
		if ( pr <= r ) sgt[3].modify( R, pr - mid, r - mid, 1 );
		
		while ( ~j && qry[j].l == i ) {
			int qr = qry[j].r - mid;
			addeq( ans[qry[j].id], add(
			  add( sgt[0].query( R, 1, qr ), sgt[1].query( R, 1, qr ) ),
			  add( sgt[2].query( R, 1, qr ), sgt[3].query( R, 1, qr ) ) ) );
			if ( i == l && qry[j].r == r ) addeq( ans[qry[j].id], all[u] );
			--j;
		}
	}
	
	/* update all[u] with contribution in current section. */
	addeq( all[u], add(
	  add( sgt[0].query( R, 1, r - mid ), sgt[1].query( R, 1, r - mid ) ),
	  add( sgt[2].query( R, 1, r - mid ), sgt[3].query( R, 1, r - mid ) ) ) );
#undef R
}

int main() {
	freopen( "sequence.in", "r", stdin );
	freopen( "sequence.out", "w", stdout );
	
	n = rint(), q = rint();
	rep ( i, 1, n ) a[i] = rint();
	rep ( i, 1, q ) {
		int l = rint(), r = rint();
		hang( 1, 1, n, l, r, i );
	}
	
	solve( 1, 1, n );
	rep ( i, 1, q ) wint( ans[i] ), putchar( '\n' );
	return 0;
}