1. 程式人生 > 實用技巧 >Solution -「校內互測」大括號樹

Solution -「校內互測」大括號樹

\(\mathcal{Description}\)

  OurTeam & OurOJ.

  給定一棵 \(n\) 個頂點的樹,每個頂點標有字元 ()。將從 \(u\)\(v\) 的簡單有向路徑上的字串成括號序列,記其正則匹配的子串個數為 \(\operatorname{ans}(u,v)\)。求:

\[\sum_{u=1}^n\sum_{v=1}^n\operatorname{ans}(u,v)\bmod998244353 \]

  \(n\le2\times10^5\)

\(\mathcal{Solution}\)

  可以先回憶一下括號樹嗷。

  來看看鏈怎麼做 owo,現有結點按 \(1\sim n\)

從左到右編號,記 \(s(i,j)\) 表示從 \(i\)\(j\) 串成的括號序列。令 \(\operatorname{match}(i)\) 為最大的 \(j<i\),滿足 \(s(j,i)\) 正則匹配。定義狀態 \(f(i)\) 表示 \(s(1,i)\) 中,以 \(i\) 結尾的正則子串貢獻。那麼:

\[f(i)=f(\operatorname{match}(i)-1)+\operatorname{match}(i) \]

  即,先保證最短的以 \(i\) 結尾的正則,起點就可以在前面任選了。而事實上,終點也能任選,那麼答案為:

\[\sum_{i=1}^nf(i)(n-i+1) \]

  需要正反分別做一次嗷。


  那麼,搬到樹上,一個正則會貢獻多少次呢?如圖(混V的請告訴我背景是誰吖~):

  

  不難發現,\((u,v)\)(或 \((v,u)\))若正則匹配,則它對答案的貢獻為 \(siz_u\times siz_v\)

  好啦,開始 \(\text{DSU on Tree}\) 吧!

  注意到我們只關心一些子樹大小的資訊,所以這樣設計狀態:

  • \(f(u,i)\) 表示 \(u\) 子樹內某一點 \(v\)\(u\),構成的串有 \(i\)( 失配,且所有 ) 被匹配的 \(siz_v\) 之和。
  • \(g(u,i)\) 表示 \(u\) 到其子樹內某一點 \(v\)
    ,構成的串有 \(i\)) 失配,且所有 ( 被匹配的 \(siz_v\) 之和。

  好奇怪的定義 qwq,該怎樣理解呢?

  考慮一條 \(v-u-w\) 的有向樹鏈,其中 \(u\)\(v\)\(w\)\(\text{LCA}\)。若 \(v-u\) 長成 (...((...(\(u-w\) 長成 ...)...)...)),其中 ... 是已匹配的括號。可見 \(v-u-w\) 是正則匹配的,而這正對應了我們的狀態 \(f(u,4)\)\(g(u,4)\)

  接著考慮輕重兒子資訊對答案的貢獻,如圖:

  \(\text{DFS}\) 輕兒子的時候,用線段樹動態維護字首的 ),字尾的 ( 是否出現失配的情況,若一個點加入後不存在失配,則用 DP 資訊更新答案。合併資訊時類似,但加入最後一個點 \(u\) 時:

  • \(s_u=\texttt{'('}\)\(f(u,i+1)=f(v,i)\)\(g(u,i-1)=f(v,i)\)

  • \(s_u=\texttt{')'}\)\(f(u,i-1)=f(v,i)\)\(g(u,i+1)=f(v,i)\)

  這……總不可能 \(\mathcal O(siz)\) 地遍歷第二維吧 qwq。事實上,發現這只是一個單純的陣列位移,初始時開兩倍陣列,用一個指標指向陣列實際的 \(0\) 號為即可 \(\mathcal O(1)\) 實現了。

  以上兩幅配圖來自 Lucky_Glass 的題解

\(\mathcal{Code}\)

#include <cstdio>

const int MAXN = 2e5, MOD = 998244353;
int n, ecnt, head[MAXN + 5], siz[MAXN + 5], son[MAXN + 5];
int ans, aryf[MAXN * 2 + 5], aryg[MAXN * 2 + 5], *f, *g;
char s[MAXN + 5];

inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int mul ( long long a, const int b ) { return ( a *= b ) < MOD ? a : a % MOD; }

inline int rint () {
	int x = 0; char s = getchar ();
	for ( ; s < '0' || '9' < s; s = getchar () );
	for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
	return x;
}

struct Edge { int to, nxt; } graph[MAXN + 5];

inline void link ( const int s, const int t ) {
	graph[++ ecnt] = { t, head[s] };
	head[s] = ecnt;
}

struct SegmentTree {
	int mn[MAXN * 2 + 5], tag[MAXN * 2 + 5];

	inline int id ( const int l, const int r ) { return ( l + r ) | ( l != r ); }
	inline void pushad ( const int l, const int r, const int v ) {
		int rt = id ( l, r );
		mn[rt] += v, tag[rt] += v;
	}
	inline void pushdn ( const int l, const int r ) {
		int rt = id ( l, r ), mid = l + r >> 1;
		if ( ! tag[rt] ) return ;
		pushad ( l, mid, tag[rt] ), pushad ( mid + 1, r, tag[rt] );
		tag[rt] = 0;
	}
	inline void pushup ( const int l, const int r ) {
		int rt = id ( l, r ), mid = l + r >> 1, lc = id ( l, mid ), rc = id ( mid + 1, r );
		mn[rt] = mn[lc] < mn[rc] ? mn[lc] : mn[rc];
	}
	inline void update ( const int l, const int r, const int ul, const int ur, const int v ) {
		if ( ul <= l && r <= ur ) return pushad ( l, r, v );
		int mid = l + r >> 1; pushdn ( l, r );
		if ( ul <= mid ) update ( l, mid, ul, ur, v );
		if ( mid < ur ) update ( mid + 1, r, ul, ur, v );
		pushup ( l, r );
	}
	inline bool check () { return mn[id ( 1, n )] >= 0; }
} preT, sufT; // ((... and ...)), preT->g, sufT->f.

inline void init ( const int u ) {
	siz[u] = 1;
	for ( int i = head[u], v; i; i = graph[i].nxt ) {
		init ( v = graph[i].to ), siz[u] += siz[v];
		if ( siz[son[u]] < siz[v] ) son[u] = v;
	}
}

inline void update ( const int u, const int dep, const int k ) {
	preT.update ( 1, n, 1, dep, s[u] == '(' ? k : -k );
	sufT.update ( 1, n, 1, dep, s[u] == ')' ? k : -k );
}

inline void calc ( const int u, int cnt, const int dep ) {
	cnt += s[u] == ')' ? 1 : -1, update ( u, dep, 1 );
	if ( sufT.check () ) ans = add ( ans, mul ( siz[u], f[cnt] ) );
	if ( preT.check () ) ans = add ( ans, mul ( siz[u], g[-cnt] ) );
	for ( int i = head[u]; i; i = graph[i].nxt ) calc ( graph[i].to, cnt, dep + 1 );
	update ( u, dep, -1 );
}

inline void coll ( const int u, int cnt, const int dep ) {
	cnt += s[u] == '(' ? 1 : -1, update ( u, dep, -1 );
	if ( sufT.check () ) f[cnt] = add ( f[cnt], siz[u] );
	if ( preT.check () ) g[-cnt] = add ( g[-cnt], siz[u] );
	for ( int i = head[u]; i; i = graph[i].nxt ) coll ( graph[i].to, cnt, dep + 1 );
	update ( u, dep, 1 );
}

inline void solve ( const int u, const bool keep ) {
	for ( int i = head[u], v; i; i = graph[i].nxt ) {
		if ( ( v = graph[i].to ) ^ son[u] ) {
			solve ( v, false );
		}
	}
	if ( son[u] ) solve ( son[u], true );
	if ( s[u] == '(' ) ans = add ( ans, mul ( g[1], n - siz[son[u]] ) );
	if ( s[u] == ')' ) ans = add ( ans, mul ( f[1], n - siz[son[u]] ) );
	for ( int i = head[u], v; i; i = graph[i].nxt ) {
		if ( ( v = graph[i].to ) ^ son[u] ) {
			*f = add ( *f, n - siz[v] ), g[0] = add ( *g, n - siz[v] );
			update ( u, 1, 1 );
			calc ( v, s[u] == ')' ? 1 : -1, 2 );
			*f = sub ( *f, n - siz[v] ), g[0] = sub ( *g, n - siz[v] );
			update ( u, 1, -1 );
			coll ( v, 0, 1 );
		}
	}
	if ( s[u] == '(' ) *f = add ( *f, siz[u] ), -- f, *g ++ = 0;
	if ( s[u] == ')' ) *g = add ( *g, siz[u] ), -- g, *f ++ = 0;
	if ( ! keep ) {
		for ( int i = 0; i <= siz[u]; ++ i ) f[i] = g[i] = 0;
		f = aryf + n, g = aryg + n;
	}
}

int main () {
	scanf ( "%d %s", &n, s + 1 );
	for ( int i = 2; i <= n; ++ i ) link ( rint (), i );
	init ( 1 );
	f = aryf + n, g = aryg + n;
	solve ( 1, true );
	printf ( "%d\n", ans );
	return 0;
}