1. 程式人生 > 其它 >P3959 寶藏(狀壓 dp)

P3959 寶藏(狀壓 dp)

目錄

Description

一任意一個節點為根,每連線一個新的節點需要花費 \(dep*dis\)\(dis\) 為相鄰兩節點的距離,求最小花費,根的深度為 \(0\)

State

\(1<=n<=12\)

\(1<=m<=3000\)

\(1<=5*10^5\)

Input

4 5 
1 2 1 
1 3 3 
1 4 1 
2 3 4 
3 4 1 

Output

4

Solution

如果可以想出 \(dp\) 方程還是很好解決的,\(dp[i][j]\) 表示深度為 \(i\) 時,已經擴充套件的狀態為 \(j\) 的最小花費

那麼如果從 \(j\) 所構成的樹中擴充套件另一些節點,那麼最小花費需要加上 \(i*|S|\),其中 \(S\) 為擴充套件這些節點所需要的總距離

擴充套件結點的部分相當於列舉子集,時間複雜度為 \(O(3^n)\)

總時間複雜度為 \(O(n*3^n)\)


Code

const int S = (1 << 12) + 5;
const int N = 1e5 + 5;
 
    int n, m, k, _;
    int a[N];
    int dp[15][S];
    int road[15][15];
    int dis[S][S];

int cal(int now, int nxt)
{
    int ans = 0;
    for(int i = 1; (1 << i - 1) <= nxt; i ++){
        if((nxt & (1 << i - 1))){
            int minn = 2e9;
            for(int j = 1; (1 << j - 1) <= now; j ++){
                if((now & (1 << j - 1))){
                    minn = min(minn, road[i][j]);
                }
            }
            if(minn == 2e9) return minn;
            ans += minn;
        }
    }
    return ans;
}

signed main()
{
    // IOS;
    while(~ sdd(n, m)){
        rep(i, 1, n) rep(j, 1, n) road[i][j] = 2e9;
        rep(i, 1, m){
            int x = read(), y = read(), w = read();
            w = min(w, road[x][y]);
            road[x][y] = w;
            road[y][x] = w;
        }
        int all = 1 << n;
        rep(i, 0, n) rep(j, 0, all) dp[i][j] = 2e9;
        rep(i, 0, all) rep(j, 0, all) dis[i][j] = 2e9;
        for(int i = 1; i < all; i <<= 1){
            dp[0][i] = 0;
        }
        for(int i = 0; i < all; i ++){
            for(int j = i; j; j = (j - 1) & i){
                int k = j ^ i; //j -> k,由 j 擴展出 k 
                dis[j][k] = cal(j, k);
            }
        }
        for(int i = 1; i <= n; i ++){
            for(int s = 0; s < all; s ++){
                for(int j = s; j; j = (j - 1) & s){
                    int k = s ^ j;
                    if(dis[j][k] == 2e9) continue;
                    dp[i][s] = min(dp[i][s], dp[i - 1][j] + dis[j][k] * i);
                }
            }
        }
        int minn = inf;
        for(int i = 1; i <= n; i ++){
            minn = min(minn, dp[i][all - 1]);
        }
        pd(minn);
    }
    // PAUSE;
    return 0;
}