高精度(加減乘除)
阿新 • • 發佈:2022-03-13
高精度加法
#include <iostream> #include <vector> #include <cstring> using namespace std; vector<int> add(vector<int> &A, vector<int> &B) { vector<int> C; int t = 0; if (A.size() < B.size()) return add(B, A); for (int i = 0; i < A.size(); i ++ ) { t += A[i]; if (i < B.size()) t += B[i]; C.push_back(t % 10); t /= 10; } if (t) C.push_back(1); return C; } int main() { string a, b; cin >> a >> b; vector<int> A, B; for (int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0'); for (int i = b.size() - 1; i >= 0; i -- ) B.push_back(b[i] - '0'); vector<int> C = add(A, B); for (int i = C.size() - 1; i >= 0; i -- ) cout << C[i]; return 0; }
高精度減法
#include <iostream> #include <vector> #include <cstring> using namespace std; bool cmp(vector<int> &A, vector<int> &B) { if (A.size() != B.size()) return A.size() >= B.size(); for (int i = A.size() - 1; i >= 0; i -- ) if (A[i] != B[i]) return A[i] >= B[i]; return true; } vector<int> sub(vector<int> &A, vector<int> &B) { vector<int> C; for (int i = 0, t = 0; i < A.size(); i ++ ) { t = A[i] - t; if (i < B.size()) t -= B[i]; C.push_back((t + 10) % 10); if (t < 0) t = 1; else t = 0; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; } int main() { string a, b; cin >> a >> b; vector<int> A, B; for (int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0'); for (int i = b.size() - 1; i >= 0; i -- ) B.push_back(b[i] - '0'); vector<int> C; if (cmp(A, B)) C = sub(A, B); else { C = sub(B, A); cout << '-'; } for (int i = C.size() - 1; i >= 0; i -- ) cout << C[i]; return 0; }
高精度乘法(高精度乘低精度)
#include <iostream> #include <vector> #include <cstring> using namespace std; vector<int> mul(vector<int> &A, int b) { vector<int> C; for (int i = 0, t = 0; i < A.size() || t; i ++ ) { if (i < A.size()) t += A[i] * b; C.push_back(t % 10); t /= 10; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; } int main() { string a; int b; cin >> a >> b; vector<int> A; for (int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0'); vector<int> C; C = mul(A, b); for (int i = C.size() - 1; i >= 0; i -- ) cout << C[i]; return 0; }
高精度乘法(高精度乘高精度)
(暴力是O(n^2)的,還有一個FFT的演算法讓時間費用更低,但是奈何本蒟蒻實在是不會啊~QAQ)
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+10,M= 2e5+10;
int a[M],b[M],l1,l2;
char s[N];
void print(int a[])
{
int k=M-1;
while(k && !a[k]) k--;
for(int i=k;i>=0;i--) cout<<a[i];
}
void mul(int a[],int b[])
{
int t=0,temp[M];
memset(temp,0,sizeof temp);
for(int i=0;i<l1;i++)
for(int j=0;j<l2;j++)
temp[i+j]+=a[i]*b[j];
for(int i=0;i<l1+l2;i++)
{
t+=temp[i];
temp[i]=t%10;
t/=10;
}
memcpy(a,temp,sizeof temp);
}
int main()
{
scanf("%s",s);
l1=strlen(s);
for(int i=0;i<l1;i++) a[l1-i-1]=s[i]-'0';
scanf("%s",s);
l2=strlen(s);
for(int i=0;i<l2;i++) b[l2-i-1]=s[i]-'0';
mul(a,b);
print(a);
return 0;
}
高精度除法(高精度除以低精度)
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
vector<int> div(vector<int> &A, int b)
{
vector<int> C;
int t = 0;
for(int i = A.size() - 1; i >= 0; i -- )
{
t = t * 10 + A[i];
C.push_back(t / b);
t %= b;
}
reverse(C.begin(), C.end());
while(C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main()
{
string a;
int b;
cin >> a >> b;
vector<int> A;
for(int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0');
vector<int> C;
C = div(A,b);
for(int i = 0; i < C.size(); i ++ )
cout << C[i];
return 0;
}