1. 程式人生 > 其它 >比較不同的對單細胞轉錄組資料聚類的方法

比較不同的對單細胞轉錄組資料聚類的方法

背景介紹

聚類之前必須要對錶達矩陣進行normalization,而且要去除一些批次效應等外部因素。通過對錶達矩陣的聚類,可以把細胞群體分成不同的狀態,解釋為什麼會有不同的群體。不過從計算的角度來說,聚類還是蠻複雜的,各個細胞並沒有預先標記好,而且也沒辦法事先知道可以聚多少類。尤其是在單細胞轉錄組資料裡面有很高的噪音,基因非常多,意味著的維度很高。

對這樣的高維資料,需要首先進行降維,可以選擇PCA或者t-SNE方法。聚類的話,一般都是無監督聚類方法,比如:hierarchical clustering, k-means clustering and graph-based clustering。演算法略微有一點複雜,略過吧。

這裡主要比較6個常見的單細胞轉錄組資料的聚類包:

  • SINCERA
  • pcaReduce
  • SC3
  • tSNE + k-means
  • SEURAT
  • SNN-Cliq

所以需要安裝並且載入一些包,安裝程式碼如下;

install.packages('pcaReduce')
## try http:// if https:// URLs are not supported
source("https://bioconductor.org/biocLite.R") 
biocLite("SC3") 
biocLite("Seurat") 
install.packages("devtools")
library("devtools")
install_github("BPSC","nghiavtr") 
install_github("hemberg-lab/scRNA.seq.funcs")
devtools::install_github("JustinaZ/pcaReduce")

載入程式碼如下:

library(pcaMethods)
library(pcaReduce)
library(SC3)
library(scater)
library(pheatmap)
set.seed(1234567)

載入測試資料

這裡選取的是資料,載入了這個scater包的SCESet物件,包含著一個23730 features, 301 samples 的表達矩陣。

供11已知的種細胞型別,這樣聚類的時候就可以跟這個已知資訊做對比,看看聚類效果如何。

可以直接用plotPCA來簡單PCA並且視覺化。

pollen <- readRDS("../pollen/pollen.rds")
pollen
## SCESet (storageMode: lockedEnvironment)
## assayData: 23730 features, 301 samples 
##   element names: exprs, is_exprs, tpm 
## protocolData: none
## phenoData
##   rowNames: Hi_2338_1 Hi_2338_2 ... Hi_GW16_26 (301 total)
##   varLabels: cell_type1 cell_type2 ... is_cell_control (33 total)
##   varMetadata: labelDescription
## featureData
##   featureNames: A1BG A1BG-AS1 ... ZZZ3 (23730 total)
##   fvarLabels: mean_exprs exprs_rank ... feature_symbol (11 total)
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:
head(fData(pollen))
##          mean_exprs exprs_rank n_cells_exprs total_feature_exprs
## A1BG     0.56418762      12460            79           169.82048
## A1BG-AS1 0.31265010      10621            37            94.10768
## A1CF     0.05453986       6796            59            16.41650
## A2LD1    0.22572953       9781            28            67.94459
## A2M      0.15087563       8855            21            45.41356
## A2M-AS1  0.02428046       5366             3             7.30842
##          pct_total_exprs pct_dropout total_feature_tpm
## A1BG        1.841606e-03    73.75415            481.37
## A1BG-AS1    1.020544e-03    87.70764            538.18
## A1CF        1.780276e-04    80.39867             13.99
## A2LD1       7.368203e-04    90.69767            350.65
## A2M         4.924842e-04    93.02326           1356.63
## A2M-AS1     7.925564e-05    99.00332             88.61
##          log10_total_feature_tpm pct_total_tpm is_feature_control
## A1BG                    2.683380  1.599256e-04              FALSE
## A1BG-AS1                2.731734  1.787996e-04              FALSE
## A1CF                    1.175802  4.647900e-06              FALSE
## A2LD1                   2.546111  1.164965e-04              FALSE
## A2M                     3.132781  4.507134e-04              FALSE
## A2M-AS1                 1.952356  2.943891e-05              FALSE
##          feature_symbol
## A1BG               A1BG
## A1BG-AS1       A1BG-AS1
## A1CF               A1CF
## A2LD1             A2LD1
## A2M                 A2M
## A2M-AS1         A2M-AS1
table(pData(pollen)$cell_type1)
## 
##   2338   2339     BJ   GW16   GW21 GW21+3  hiPSC   HL60   K562   Kera 
##     22     17     37     26      7     17     24     54     42     40 
##    NPC 
##     15
plotPCA(pollen, colour_by = "cell_type1")

可以看到簡單的PCA也是可以區分部分細胞型別的,只不過在某些細胞相似性很高的群體區分力度不夠,所以需要開發新的演算法來解決這個聚類的問題。

SC聚類

pollen <- sc3_prepare(pollen, ks = 2:5)
pollen <- sc3_estimate_k(pollen)
pollen@sc3$k_estimation
## [1] 11
## 準備 SCESet物件 資料給 SC3方法,先預測能聚多少個類,發現恰好是11個。

## 這裡是平行計算,所以速度還可以
pollen <- sc3(pollen, ks = 11, biology = TRUE)
pollen
## SCESet (storageMode: lockedEnvironment)
## assayData: 23730 features, 301 samples 
##   element names: exprs, is_exprs, tpm 
## protocolData: none
## phenoData
##   rowNames: Hi_2338_1 Hi_2338_2 ... Hi_GW16_26 (301 total)
##   varLabels: cell_type1 cell_type2 ... sc3_11_log2_outlier_score
##     (35 total)
##   varMetadata: labelDescription
## featureData
##   featureNames: A1BG A1BG-AS1 ... ZZZ3 (23730 total)
##   fvarLabels: mean_exprs exprs_rank ... sc3_11_de_padj (16 total)
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:
head(fData(pollen))
##          mean_exprs exprs_rank n_cells_exprs total_feature_exprs
## A1BG     0.56418762      12460            79           169.82048
## A1BG-AS1 0.31265010      10621            37            94.10768
## A1CF     0.05453986       6796            59            16.41650
## A2LD1    0.22572953       9781            28            67.94459
## A2M      0.15087563       8855            21            45.41356
## A2M-AS1  0.02428046       5366             3             7.30842
##          pct_total_exprs pct_dropout total_feature_tpm
## A1BG        1.841606e-03    73.75415            481.37
## A1BG-AS1    1.020544e-03    87.70764            538.18
## A1CF        1.780276e-04    80.39867             13.99
## A2LD1       7.368203e-04    90.69767            350.65
## A2M         4.924842e-04    93.02326           1356.63
## A2M-AS1     7.925564e-05    99.00332             88.61
##          log10_total_feature_tpm pct_total_tpm is_feature_control
## A1BG                    2.683380  1.599256e-04              FALSE
## A1BG-AS1                2.731734  1.787996e-04              FALSE
## A1CF                    1.175802  4.647900e-06              FALSE
## A2LD1                   2.546111  1.164965e-04              FALSE
## A2M                     3.132781  4.507134e-04              FALSE
## A2M-AS1                 1.952356  2.943891e-05              FALSE
##          feature_symbol sc3_gene_filter sc3_11_markers_clusts
## A1BG               A1BG            TRUE                     5
## A1BG-AS1       A1BG-AS1            TRUE                     4
## A1CF               A1CF            TRUE                     2
## A2LD1             A2LD1           FALSE                    NA
## A2M                 A2M           FALSE                    NA
## A2M-AS1         A2M-AS1           FALSE                    NA
##          sc3_11_markers_padj sc3_11_markers_auroc sc3_11_de_padj
## A1BG            7.740802e-10            0.8554452   1.648352e-18
## A1BG-AS1        1.120284e-03            0.6507985   5.575777e-03
## A1CF            5.007946e-23            0.8592113   1.162843e-17
## A2LD1                     NA                   NA             NA
## A2M                       NA                   NA             NA
## A2M-AS1                   NA                   NA             NA
## 可以看到SC3方法處理後的SCESet物件的基因資訊增加了5列,比較重要的是sc3_gene_filter資訊,決定著該基因是否拿去聚類,因為基因太多了,需要挑選
table(fData(pollen)$sc3_gene_filter)
## 
## FALSE  TRUE 
## 11902 11828
### 只有一半的基因被挑選去聚類了

## 後面是一些視覺化
sc3_plot_consensus(pollen, k = 11, show_pdata = "cell_type1")
sc3_plot_silhouette(pollen, k = 11)
sc3_plot_expression(pollen, k = 11, show_pdata = "cell_type1")
sc3_plot_markers(pollen, k = 11, show_pdata = "cell_type1")
plotPCA(pollen, colour_by = "sc3_11_clusters")
## 還支援shiny的互動式聚類,暫時不顯示
# sc3_interactive(pollen)

很明顯可以看到SC3聚類的效果要好於普通的PCA

pcaReduce

# use the same gene filter as in SC3
input <- exprs(pollen[fData(pollen)$sc3_gene_filter, ])
# run pcaReduce 1 time creating hierarchies from 1 to 30 clusters
pca.red <- PCAreduce(t(input), nbt = 1, q = 30, method = 'S')[[1]]
##  這裡對2~30種類別的情況都分別對樣本進行分組。
## 我們這裡取只有11組的時候,這些樣本是如何分組的資訊來視覺化。
pData(pollen)$pcaReduce <- as.character(pca.red[,32 - 11])
plotPCA(pollen, colour_by = "pcaReduce")

tSNE + kmeans

scater包包裝了 Rtsne 和 ggplot2 來做tSNE並且視覺化。

pollen <- plotTSNE(pollen, rand_seed = 1, return_SCESet = TRUE)
## 上面的tSNE的結果,下面用kmeans的方法進行聚類,假定是8類細胞型別。
pData(pollen)$tSNE_kmeans <- as.character(kmeans(pollen@reducedDimension, centers = 8)$clust)
plotTSNE(pollen, rand_seed = 1, colour_by = "tSNE_kmeans")

SNN-Cliq

這個有一點難用,算了吧。

distan <- "euclidean"
par.k <- 3
par.r <- 0.7
par.m <- 0.5
# construct a graph
scRNA.seq.funcs::SNN(
    data = t(input),
    outfile = "snn-cliq.txt",
    k = par.k,
    distance = distan
)
# find clusters in the graph
snn.res <- 
    system(
        paste0(
            "python snn-cliq/Cliq.py ", 
            "-i snn-cliq.txt ",
            "-o res-snn-cliq.txt ",
            "-r ", par.r,
            " -m ", par.m
        ),
        intern = TRUE
    )
cat(paste(snn.res, collapse = "n"))
snn.res <- read.table("res-snn-cliq.txt")
# remove files that were created during the analysis
system("rm snn-cliq.txt res-snn-cliq.txt")
pData(pollen)$SNNCliq <- as.character(snn.res[,1])
plotPCA(pollen, colour_by = "SNNCliq")

SINCERA

至少是在這個資料集上面表現不咋地

# perform gene-by-gene per-sample z-score transformation
dat <- apply(input, 1, function(y) scRNA.seq.funcs::z.transform.helper(y))
# hierarchical clustering
dd <- as.dist((1 - cor(t(dat), method = "pearson"))/2)
hc <- hclust(dd, method = "average")
num.singleton <- 0
kk <- 1
for (i in 2:dim(dat)[2]) {
    clusters <- cutree(hc, k = i)
    clustersizes <- as.data.frame(table(clusters))
    singleton.clusters <- which(clustersizes$Freq < 2)
    if (length(singleton.clusters) <= num.singleton) {
        kk <- i
    } else {
        break;
    }
}
cat(kk)
## 14
pheatmap(
    t(dat),
    cluster_cols = hc,
    cutree_cols = 14,
    kmeans_k = 100,
    show_rownames = FALSE
)

SEURAT

library(Seurat)
pollen_seurat <- new("seurat", raw.data = get_exprs(pollen, exprs_values = "tpm"))
pollen_seurat <- Setup(pollen_seurat, project = "Pollen")
pollen_seurat <- MeanVarPlot(pollen_seurat)
pollen_seurat <- RegressOut(pollen_seurat, latent.vars = c("nUMI"), 
                            genes.regress = [email protected])
pollen_seurat <- PCAFast(pollen_seurat)
pollen_seurat <- RunTSNE(pollen_seurat)
pollen_seurat <- FindClusters(pollen_seurat)
TSNEPlot(pollen_seurat, do.label = T)
pData(pollen)$SEURAT <- as.character(pollen_seurat@ident)
sc3_plot_expression(pollen, k = 11, show_pdata = "SEURAT")
markers <- FindMarkers(pollen_seurat, 2)
FeaturePlot(pollen_seurat, 
            head(rownames(markers)), 
            cols.use = c("lightgrey", "blue"), 
            nCol = 3)