1. 程式人生 > 其它 >導數專題 函式零點個數

導數專題 函式零點個數

\({\color{Red}{歡迎到學科網下載資料學習 }}\)
[ 【基礎過關係列】高二數學同步精品講義與分層練習(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟貴哥學數學,so \quad easy!}}\)

選擇性第二冊同步鞏固,難度2顆星!

基礎知識

函式的零點、方程的實數根

函式的零點、方程的實數根與兩函式的交點可視為同一問題,
函式\(h(x)=f(x)-g(x)\)的零點個數
\(⇔\)方程\(f(x)=g(x)\)實數根個數
\(⇔\)函式\(y=f(x)\)與函式\(y=g(x)\)交點個數.
 

函式零點存在定理

如果函式\(y=f(x)\)\([a ,b]\)上的圖象是連續不斷的,且\(f(a)f(b)<0\),那麼函式\(y=f(x)\)\((a ,b)\)至少有一個零點\(c\),即存在\(c∈(a ,b)\),使得\(f(c)=0\),這個\(c\)也就是方程\(f(x)=0\)的解.
 

求函式零點個數的方法

對於複雜的函式(特別是含參函式)需要利用導數的方法求解
(1) 直接法
直接法,即直接對所求函式進行分析,
(i)對於不含參函式,比如\(f(x)=x^3-2x^2-x\)\(f(x)=e^x-2x^2+x\)等,
求零點個數的思路是:求導→求單調性→求極值最值→結合函式圖象分析零點個數;
(ii)對含參函式,進行分類討論就行.
 

(2) 分離引數法
對於求含參函式的零點個數,採取分離引數法可把問題轉化為求不含參函式問題;
比如求函式\(f(x)=e^x-ax\)的零點個數,
採取分離引數法相當於求函式\(y=\dfrac{e^x}{x}\)與函式\(y=a\)的交點個數.

 

(3) 切線法
切線法,即利用導數的幾何意義求兩函式相切的“臨界值”,再結合圖象判斷交點個數;
若所求函式能“分離”出一次函式或“分離”兩函式有明顯“凹凸性”,可考慮切線法;
比如求函式\(f(x)=e^x-ax\)的零點個數,可轉化為\(y=e^x\)\(y=ax\)的交點個數,
此時先確定當\(a\)為何值時兩函式相切,再結合圖象分析交點個數.

比如求函式\(f(x)=e^x+1-a\left(2+\dfrac{x}{e^x}\right)\)

的零點個數,可轉化為\(y=e^x+1\)\(y=a\left(2+\dfrac{x}{e^x}\right)\)的交點個數,此時先確定當\(a\)為何值時兩函式相切,再結合圖象分析交點個數.

 

注意事項

(1) 求函式零點個數時,時常要結合函式圖象,所以儘量圖象準確,不要想當然;
【例】求函式\(f(x)=xe^x\)的零點個數.
( 函式零點明顯僅有\(0\),以下討論僅為表達畫圖的重要性)
\(\because f'(x)=(x+1)e^x\)
\(\therefore\)函式\(f(x)\)\((-∞,-1)\)遞減,在\((-1,+∞)\)遞增,最小值\(f(-1)=-\dfrac{1}{e}<0\)
此時就以為函式圖象是左圖,那就得到“有兩個零點”的錯誤結論,
嚴謹的表達是,\(\because x⟶-∞\)\(f(x)⟶0\)\(\therefore f(x)\)\((-∞,-1)\)不存在零點,
\(\because f(1)=e>0\), \(\therefore f(-1)f(1)<0\)
由函式零點存在定理可得\(f(x)\)\((-1,+∞)\)存在\(1\)個零點,
故函式\(f(x)=xe^x\)實際的圖象如右圖,僅有一個零點.

(2) 要避免上訴“想當然”的情況需要在零點旁邊找兩個函式值異號的點,方法有二種,
  (i)利用極限的思路,比如判斷\(x→x_0\)時,\(y→y_0\)\(x→-∞\)時,\(y→+∞\)之類的;
此時會涉及到函式增長快慢問題,但若涉及大學的內容(比如洛必達法則),則解答不會得滿分;
  (ii) 找到“實實在在”的點;
 

(3) 對某些含參函式,分離變數的方法行不通,比如因為需要洛必達法則、求導困難等,需要用直接法進行分類討論.
 

極限問題

(1) 函式的增長速度
一般地,如果一個函式在某一範圍內導數的絕對值\(|f'(x)|\)較大,那麼函式在這個範圍內變化得較快,這時函式的圖象就比較“陡峭”(向上或向下);反之,函式在這個範圍內變化得較慢,函式的圖象就比較“平緩”.
【例】指數函式\(y=a^x (a>1)\)\((0,+∞)\)的增長速度是“爆發式”的,
冪函式\(y=x^n (n>0)\)\((0,+∞)\)的增長速度較快,指數\(n\)越大,增長速度越快.
一次函式\(y=kx+b(k>0)\)的增長的速度不變,\(k\)越大,其增長得越快.
對數函式\(y=\log _a⁡x(a>1)\)\((1,+∞)\)的增長速度很慢.
 

(2) 極限
對於某函式\(y=f(x)\),當\(x→a\)時,\(y\)趨向什麼”屬於極限問題,本質是求\(\lim _{x \rightarrow a} f(x)\).
以下舉幾個例子,大家細品下,
\(f(x)=e^x\),當\(x→0\)時,\(y→e^0=1\);即函式\(y=e^x\)能取到\(0\),直接代入便可;
\(f(x)=\dfrac{1}{x}\),當\(x→+∞\)時,\(y→0\);可想象下\(x\)取一很大的數\(10000\),對應函式值\(y=\dfrac{1}{10000}\)很小,接近\(0\)
\(f(x)=\dfrac{\ln x}{x^2}\) ,當\(x→+∞\)時,分子\(\ln ⁡x→+∞\),分母\(x^2→+∞\),那\(\dfrac{\ln x}{x^2}\)趨向什麼呢?
因為函式\(y=\ln ⁡x\)較函式\(y=x^2\)\((0,+∞)\)增長得慢很多,所以當\(x→+∞\)時, \(\dfrac{\ln x}{x^2} \rightarrow 0\)
這需要了解函式間在某區間的增長速度的比較;
\(f(x)=\dfrac{\sin x}{x}\),當\(x→0\)時,分子\(\sin ⁡x→0\),分母\(x→0\),那\(\dfrac{\sin x}{x}\)趨向什麼呢?
此時\(y=x\)\(y=\sin ⁡x\)\(x=0\)附近的增速在高中無法確定,
其實\(x→0\)時, \(\dfrac{\sin x}{x} \rightarrow 1\)的,為什麼呢?(用洛必達法則可求,但用高中導數的定義也可求)
其實\(\lim _{x \rightarrow 0} \dfrac{\sin x}{x}=\lim _{x \rightarrow 0} \dfrac{\sin x-0}{x-0}=\lim _{x \rightarrow 0} \dfrac{g(x)-f(0)}{x-0}=g^{\prime}(0)=1\),(\(g(x)=\sin ⁡x\),\(g'(x)=\cos ⁡x\))
如下圖

 

基本方法

【題型1】 求不含參函式的零點個數

【典題1】判斷\(g(x)=2\ln ⁡x-\dfrac{1}{2} x^2+x\)的零點個數.
解析 \(g(x)=2\ln ⁡x-\dfrac{1}{2} x^2+x\)的定義域是\((0,+∞)\)
\(g^{\prime}(x)=\dfrac{2}{x}-x+1=\dfrac{(-x+2)(x+1)}{x}\)
\(g'(x)=0\)\(x=2\)
所以當\(x∈(0,2)\)時,\(g'(x)>0\)\(g(x)\)單調遞增;
\(x∈(2,+∞)\)時,\(g'(x)<0\)\(g(x)\)單調遞減,
所以\(x=2\)\(g(x)\)唯一的極值點且為極大值點,
\(g_{\max }(x)=g(2)=2 \ln 2>0\)
\(g\left(\dfrac{1}{e}\right)=-2-\dfrac{1}{2 e^2}-\dfrac{1}{e}<0\)
\(g\left(e^2\right)=4-\dfrac{1}{2} e^4+e^2=-\dfrac{1}{2}\left(e^2-1\right)^2+\dfrac{9}{2}<0\)
由零點的存在性定理知,\(g(x)\)\(\left(\dfrac{1}{e}, 2\right)\)\((2,e^2 )\)上分別有一個零點,
\(g(x)\)\(2\)個零點.
點撥 解題時多結合導函式“穿線圖”與原函式“趨勢圖”,關於本題的取點,在\((0,2)\)上取\(x=\dfrac{1}{e}\),在\((2,+∞)\)上取\(x=e^2\),取點一要看取點範圍,二看函式特徵,而函式中含\(\ln ⁡x\)多取\(x=1\)\(e\)\(\dfrac{1}{e}\)\(e^2\)之類的,若失敗了多嘗試,比如本題中取\(g(e)=2-\dfrac{e^2}{2}+e>0\)失敗就再取大些的\(x=e^2\)等.若本題是非解答題,不要取點,直接由\(x→-∞\)\(y→-∞\)\(x→+∞\)\(y→-∞\)可得.
 

【鞏固練習】

1.在函式\(f(x)=ax^3+bx(a≠0)\)影象在點\((1,f(1))\)處的切線與直線\(6x+y+7=0\)平行,導函式\(f'(x)\)的最小值為\(-12\).
  (1)求\(a\)\(b\)的值;
  (2)判斷方程\(f(x)=0\)解的個數.
 
 

2.證明函式\(f(x)=\ln ⁡(x+1)-\sin ⁡x\)\(\left(\dfrac{\pi}{2},+\infty\right)\)上有且僅有一個零點.
 
 

參考答案

  1. 答案 (1)\(a=2\),\(b=-12\);(2)\(3\).
    解析 (1)\(a=2\),\(b=-12\)(過程略).
    (2)由(1)知\(f(x)=2x^3-12x\)
    \(\therefore f^{\prime}(x)=6 x^2-12=6(x+\sqrt{2})(x-\sqrt{2})\),列表如下:
\(x\) \((-∞,-\sqrt{2})\) \(-\sqrt{2}\) \((-\sqrt{2},\sqrt{2})\) \(\sqrt{2}\) \((\sqrt{2},+∞)\)
\(f'(x)\) \(+\) \(0\) \(-\) \(0\) \(+\)
\(f(x)\) 極大值 極小值

\(\therefore f(x)\)的極大值是\(f(-\sqrt{2})=8\sqrt{2}\),極小值是\(f(\sqrt{2})=-8\sqrt{2}\)
且當\(f(-3)=-18<0\)\(f(3)=18>0\)
\(\therefore f(-3)\cdot f(-\sqrt{2})<0\)\(f(3)\cdot f(\sqrt{2})>0\)
\(\therefore f(x)\)\((-∞,-\sqrt{2})\)\((-\sqrt{2},\sqrt{2})\)\((\sqrt{2},∞)\)上各有\(1\)個零點,
故函式\(f(x)\)有三個零點,即方程\(f(x)=0\)解的個數是\(3\).

  1. 證明 \(f^{\prime}(x)=\dfrac{1}{x+1}-\cos x\)
    \(x \in\left(\dfrac{\pi}{2}, \pi\right)\)時,\(-\cos x>0\)\(\dfrac{1}{x+1}>0\)
    \(\therefore f^{\prime}(x)=\dfrac{1}{x+1}-\cos x>0\)\(\therefore f(x)\)單調遞增,
    \(f\left(\dfrac{\pi}{2}\right)=\ln \left(\dfrac{\pi}{2}+1\right)-1<0\)\(f(π)=\ln ⁡(π+1)>0\)
    所以\(f(x)\)\(\left(\dfrac{\pi}{2}, \pi\right)\)上有且僅有一個零點\(x_0\)
    \(x∈[π,+∞)\)時,\(f(x)=\ln ⁡(x+1)-\sin ⁡x>\ln ⁡(π+1)-1>0\)
    所以以\(f(x)\)\([π,+∞)\)上無零點;
    綜上所述,\(f(x)\)有且僅有一個零點.
     

【題型2】 分離引數法

【典題1】\(f(x)=ae^2x+(a-2)e^x-x\)有兩個零點,求\(a\)的取值範圍.
解析 依題意, \(f(x)=0 \Leftrightarrow a\left(e^{2 x}+e^x\right)=2 e^x+x \Leftrightarrow a=\dfrac{2 e^x+x}{e^{2 x}+e^x}\)
\(g(x)=\dfrac{2 e^x+x}{e^{2 x}+e^x}\)
\(g^{\prime}(x)=\dfrac{\left(2 e^x+1\right)\left(e^{2 x}+e^x\right)-\left(2 e^x+x\right)\left(2 e^{2 x}+e^x\right)}{\left(e^{2 x}+e^x\right)^2}=\dfrac{\left(2 e^x+1\right)\left(1-e^x-x\right)}{e^x\left(e^x+1\right)^2}\)
\(h(x)=1-e^x-x\)
顯然函式\(h(x)\)\(R\)上的減函式,而\(h(0)=0\)
\(x<0\)時,\(h(x)>0\)\(g'(x)>0\),當\(x>0\)時,\(h(x)<0\)\(g'(x)<0\)
因此,函式\(g(x)\)\((-∞,0)\)上單調遞增,在\((0,+∞)\)上單調遞減,
\(x=0\)時,\(g(x)_{max}=g(0)=1\)
\(g(-1)=\dfrac{2-e}{e^{-1}+1}<0\)
又當\(x>0\)時,\(g(x)>0\)恆成立,
函式\(f(x)\)有兩個零點,等價於直線\(y=a\)與函式\(y=g(x)\)的圖象有兩個公共點,
在同一座標系內作出直線\(y=a\)與函式\(y=g(x)\)的圖象,如圖,

由圖象知,當且僅當\(0<a<1\)時,直線\(y=a\)與函式\(y=g(x)\)的圖象有兩個公共點,
所以\(a\)的取值範圍是\((0,1)\)
點撥 利用分離引數法,能把含參函式問題轉化為不含參函式問題.
 

【鞏固練習】

1.已知函式\(f(x)=(x-a)\ln ⁡x(a∈R)\),若函式\(f(x)\)存在三個單調區間,則實數\(a\)的取值範圍是\(\underline{\quad \quad}\) .
 

2.討論函式\(g(x)=\dfrac{1}{x}-\dfrac{m}{x^2}-\dfrac{x}{3}(x>0)\)零點的個數.
 
 

3.已知函式\(f(x)=\dfrac{x^2+2 x+4}{x+2}\)
(1)求函式\(f(x)\)在區間\([-1,1]\)上的最值;
(2)若關於\(x\)的方程\((x+2)f(x)-ax=0\)在區間\((0,3)\)內有兩個不等實根,求實數\(a\)的取值範圍.
 
 

參考答案

  1. 答案 \(\left(-\dfrac{1}{e^2}, 0\right)\)
    解析 \(f^{\prime}(x)=\ln x+\dfrac{1}{x}(x-a)=\ln x+1-\dfrac{a}{x}\)
    函式\(f(x)=(x-a)\ln ⁡x(a∈R)\),若函式\(f(x)\)存在三個單調區間,
    \(f'(x)=0\)有兩個不等實根,即\(a=x(\ln ⁡x+1)\)有兩個不等實根,
    轉化為\(y=a\)\(y=x(\ln ⁡x+1)\)的影象有兩個不同的交點,
    \(y'=\ln ⁡x+2\),令\(\ln ⁡x+2=0\),即\(x=\dfrac{1}{e^2}\)
    \(y=x(\ln ⁡x+1)\)\(\left(0, \dfrac{1}{e^2}\right)\)上單調遞減,在\(\left(\dfrac{1}{e^2},+\infty\right)\)上單調遞增 ,
    \(y_{min}=-\dfrac{1}{e^2}\)
    \(x\in \left(0, \dfrac{1}{e^2}\right)\)時,\(y<0\)
    所以\(a\)的範圍為\(\left(-\dfrac{1}{e^2}, 0\right)\).

  2. 答案\(m>\dfrac{2}{3}\)時,函式\(g(x)\)無零點;
    \(m=\dfrac{2}{3}\)\(m≤0\)時,函式\(g(x)\)有且僅有一個零點;
    \(0<m<\dfrac{2}{3}\)時,函式\(g(x)\)有兩個零點.
    解析\(g(x)=0\),得\(m=-\dfrac{1}{3} x^3+x(x>0)\)
    \(h(x)=-\dfrac{1}{3} x^3+x(x>0)\)
    所以\(h'(x)=-x^2+1=-(x-1)(x+1)\)
    \(x\in (0,1)\)時,\(h'(x)>0\),此時\(h(x)\)\((0,1)\)上為增函式;
    \(x\in (1,+∞)\)時,\(h'(x)<0\),此時\(h(x)\)\((1,+∞)\)上為減函式,
    所以當\(x=1\)時,\(h(x)\)取極大值\(h(1)=-1+\dfrac{1}{3}=\dfrac{2}{3}\)
    \(x→0\)\(h(x)→0\)\(x→+∞\)\(h(x)→-∞\)

    故當\(m>\dfrac{2}{3}\)時,函式\(y=m\)和函式\(y=h(x)\)無交點;
    \(m=\dfrac{2}{3}\)時,函式\(y=m\)和函式\(y=h(x)\)有且僅有一個交點;
    \(0<m<\dfrac{2}{3}\)時,函式\(y=m\)和函式\(y=h(x)\)有兩個交點;
    \(m≤0\)時,函式\(y=m\)和函式\(y=h(x)\)有且僅有一個交點.
    綜上所述,當\(m>\dfrac{2}{3}\)時,函式\(g(x)\)無零點;
    \(m=\dfrac{2}{3}\)\(m≤0\)時,函式\(g(x)\)有且僅有一個零點,
    \(0<m<\dfrac{2}{3}\)時,函式\(g(x)\)有兩個零點.

  3. 答案 (1)最大值為\(3\),最小值為\(2\);(2) \(\left(6, \dfrac{19}{3}\right)\)
    解析 (1)最大值為\(3\),最小值為\(2\)(過程略).
    (2)因為關於於\(x\)的方程\((x+2)f(x)-ax=0\)在區間\((0,3)\)內有兩個不等實根,
    \((x+2) \cdot \dfrac{x^2+2 x+4}{x+2}-a x=0\)在區間\((0,3)\)內有兩個不等實根,
    所以\(x^2+2x+4-ax=0\)在區間\((0,3\))內有兩個不等實根,
    所以\(a=\dfrac{x^2+2 x+4}{x}\)在區間\((0,3)\)內有兩個不等實根,
    \(g(x)=\dfrac{x^2+2 x+4}{x}\),\(x\in (0,3)\)
    \(g(x)=x+2+\dfrac{4}{x} \geqslant 2 \sqrt{x \cdot \dfrac{4}{x}}+2=6\) (當且僅當\(x=2\)時,取等號),
    \(x→0\)時,\(g(x)→+∞\)\(g(3)=\dfrac{3^2+2 \times 3+4}{3}=\dfrac{19}{3}\)
    所以\(a\)的取值範圍為 \(\left(6, \dfrac{19}{3}\right)\)
     

【題型3】直接法

【典題1】 討論函式\(f(x)=x\ln x-\dfrac{1}{2} x^2+(a-1)x(a\in R)\)的極值點的個數.
解析 \(f(x)\)的定義域是\((0 ,+∞)\)\(f'(x)=\ln x-x+a\)
\(g(x)=\ln x-x+a\),則\(f'(x)=\ln x-x+a\),(建構函式,二次求導)
\(x\in (0 ,1)\)時,\(g^{\prime}(x)>0\)\(g(x)\)單調遞增,即\(f'(x)\)單調遞增;
\(x\in (1 ,+∞)\)時,\(g'(x)<0\)\(g(x)\)單調遞減,即\(f'(x)\)單調遞減;
所以當\(x=1\)時,\(f'(x)\)有極大值\(f'(1)=a-1\),也是最大值,
(確定\(f'(x)\)的最大值\(a-1\),想下函式圖象\(a-1\)\(0\)的大小比較決定導函式\(y=f'(x)\)是否存在零點)
① 當\(a-1≤0\),即\(a≤1\)時,

所以\(f(x)\)\((0 ,+∞)\)上單調遞減,此時\(f(x)\)無極值,
② 當\(a>1\)時,\(f'(1)=a-1>0\)
\(f^{\prime}\left[\left(\dfrac{1}{e}\right)^{a+1}\right]=\ln \left(\dfrac{1}{e}\right)^{a+1}-\left(\dfrac{1}{e}\right)^{a+1}+a\)\(=-a-1-\left(\dfrac{1}{e}\right)^{a+1}+a=-1-\left(\dfrac{1}{e}\right)^{a+1}<0\)
易證\(x>1\)時,\(e^x>2x\)
所以\(a>1\)\(f'(e^a )=2a-e^a<0\)

故存在\(x_1\) ,\(x_2\)滿足\(0<\left(\dfrac{1}{e}\right)^{a+1}<x_1<1<x_2<e^a\)\(f'(x_1)=f'(x_2)=0\)
\(x\in (0 ,x_1)\)時,\(f(x)\)單調遞減,
\(x\in (x_1 ,x_2)\)時,\(f(x)\)單調遞增,
\(x\in (x_2 ,+∞)\)時,\(f(x)\)單調遞減,
所以\(f(x)\)\(x=x_1\)處有極小值,在\(x=x_2\)處有極大值.
綜上所述,當\(a≤1\)時,\(f(x)\)沒有極值點;當\(a>1\)時,\(f(x)\)\(2\)個極值點.
點撥
① 求出導函式\(f'(x)=\ln x-x+a\),它的圖象很難確定,不知道是否存在零點(這與原函式單調性有關),則考慮二次求導進行分析;
② 當\(a>1\)時,導函式\(f'(x)=\ln x-x+a\)存在零點\(x_1\) ,\(x_2\)是怎麼確定的?
誤區1:\(y=f'(x)\)最大值在x軸上方且是“先增後減”,想當然說它有兩個零點是不嚴謹的.因為\(y=f'(x)\)的圖象可能如下左圖,則只有一個零點;如右圖,甚至沒有零點;

誤區2:當\(x→0\)時,顯然\(f'(x)→-∞\),當\(x→+∞\)時,顯然\(f'(x)→-∞\)
那可知\(y=f'(x)\)存在兩個零點,也不夠嚴謹;
而因\(f^{\prime}\left[\left(\dfrac{1}{e}\right)^{a+1}\right]<0\)\(f'(e^a)=2a-e^a<0\)
由零點判定定理可確定\(y=f'(x)\)有兩個零點\(x_1\)\(x_2\).
③ 那“取點”\(\left(\dfrac{1}{e}\right)^{a+1}\)\(e^a\)是怎麼想到的呢?這需要些技巧,導函式\(f'(x)=\ln x-x+a\)中有引數\(a>1\)\(x\)取常數是不行的;因有\(\ln x\),想到含\(a\)\(e\)指數冪,多嘗試就可以!
 

【典題2】已知函式\(f(x)=\dfrac{1}{x}+a\ln ⁡x-a-1\)\(a\in R\)
  (1)討論函式\(f(x)\)的單調性;(2)討論函式\(f(x)\)的零點個數.
解析 (1) \(f^{\prime}(x)=-\dfrac{1}{x^2}+\dfrac{a}{x}=\dfrac{a x-1}{x^2}\)
\(a≤0\)時,\(f'(x)<0\),故\(f(x)\)\((0,+∞)\)上單調遞減,
\(a>0\)時, \(f^{\prime}(x)>0 \Rightarrow x>\dfrac{1}{a}\)
\(f(x)\)\(\left(0, \dfrac{1}{a}\right)\)上單調遞減,在\(\left(\dfrac{1}{a},+\infty\right)\)上單調遞增.
(2)當\(a≤0\)時, \(f\left(\dfrac{1}{e}\right)=e-2 a-1 \geq e-1>0\)\(f(e)=\dfrac{1}{e}-1<0\)\(f(x)\)有唯一零點;
\(a>0\)時,\(f(1)=-a<0\)
(不用最小值\(f\left(\dfrac{1}{a}\right)=-a\ln a-1<0\),因為這個還要證明,用\(f(1)=-a<0\)容易,接著要在\(x=1\)兩邊各取點\(0<x_1<1\),\(x_2>1\)使得\(f(x_1 )>0\)\(f(x_2 )>0\), )
\(e^{1+\dfrac{1}{a}}>1,\)\(f\left(e^{1+\dfrac{1}{a}}\right)=\dfrac{1}{e^{1+\dfrac{1}{a}}}+a\left(1+\dfrac{1}{a}\right)-a-1=\dfrac{1}{e^{1+\dfrac{1}{a}}}>0\),(取 \(x_2=e^{1+\dfrac{1}{a}}\))
\(\therefore f(x)\)\(\left(1, e^{1+\dfrac{1}{a}}\right)\)內有一個零點;
\(f\left(e^{-a-1}\right)=e^{a+1}-(a+1)^2\),(取 \(x_1=e^{-a-1}<1\))
\(g(t)=e^t-t^2\),則\(g'(t)=e^t-2t\)\(g'' (t)=e^t-2\)
\(t>1\)時,\(g'' (t)>e-2>0\)\(\therefore g'(t)\)單調遞增,
\(\therefore g'(t)>g'(1)=e-2>0\)\(\therefore g(t)\)單調遞增,
\(\therefore g(t)>g(1)=e-1>0\),故 \(f\left(e^{-a-1}\right)>0\)
\(\because e^{-a-1}<1\)\(\therefore f(x)\)\((e^{-a-1},1)\)內有一個零點;
\(\therefore\)\(a>0\)\(f(x)\)有兩個零點.
綜上,當\(a≤0\)\(f(x)\)有一個零點,當\(a>0\)\(f(x)\)有兩個零點.
 

【鞏固練習】

  1. 若函式\(f(x)=-\dfrac{1}{3} x^3+a x^2+3 a^2 x-\dfrac{5}{3}\)僅有一個零點,求實數\(a\)的取值範圍.
     

2.討論函式\(f(x)=2 e^{2 x}-\dfrac{a}{x}\)\(x\in (0,1)\)的零點的個數.
 
 

3.已知函式\(f(x)=ax⋅\ln ⁡x\)(其中\(a≠0\),\(a\in R\)), \(g(x)=\dfrac{x-1}{x+1}\)
  (1)若存在實數\(a\)使得\(f(x)<\dfrac{1}{e}\)恆成立,求\(a\)的取值範圍;
  (2)當\(a⩽\dfrac{1}{2}\)時,討論函式\(y=f(x)-g(x)\)的零點個數.
 
 

參考答案

  1. 答案 \(\left(-1, \dfrac{\sqrt[3]{5}}{3}\right)\)
    解析 函式\(f(x)\)只有一個零點,
    因為\(f'(x)=-x^2+2ax+3a^2=-(x-3a)(x+a)\)
    ①當\(a<0\)時,由\(f'(x)>0\),解得\(3a<x<-a\)
    所以函式\(f(x)\)在區間\((3a,-a)\)上單調遞增,
    \(f'(x)<0\),解得\(x<3a\)\(x>-a\)
    所以函式\(f(x)\)在區間\((-∞,3a)\)\((-a,+∞)\)上單調遞減,
    \(f(0)=-\dfrac{5}{3}<0\)
    所以只需要\(f(-a)<0\),解得\(-1<a<0\)
    所以實數\(a\)的取值範圍為\((-1,0)\)
    ②當\(a=0\)時,顯然\(f(x)\)只有一個零點成立,
    ③當\(a>0\)時,由\(f'(x)>0\),解得\(-a<x<3a\)
    \(f(x)\)在區間\((-a,3a)\)上單調遞增,
    \(f'(x)<0\),解得\(x<-a\)\(x>3a\)
    即函式\(f(x)\)在區間\((-∞,-a)\)\((3a,+∞)\)上單調遞減,
    \(f(0)=-\dfrac{5}{3}<0\)
    所以只需\(f(3a)<0\),解得 \(0<a<\dfrac{\sqrt[3]{5}}{3}\)
    綜上,實數\(a\)的取值範圍為\(\left(-1, \dfrac{\sqrt[3]{5}}{3}\right)\)

  2. 答案\(a≤0\)\(a≥2e^2\)時,\(f(x)\)無零點;當\(0<a<2e^2\)時,\(f(x)\)存在\(1\)個零點 .
    解析 \(f^{\prime}(x)=4 e^{2 x}+\dfrac{a}{x^2}\)
    ①當\(a≤0\)時,\(f(x)>0\)恆成立,在\((0,1)\)上恆成立,\(\therefore f(x)\)\((0,1)\)上無零點;
    ②當\(a≥2e^2\)時, \(\because f^{\prime}(x)=4 e^{2 x}+\dfrac{a}{x^2}>0\),在\((0,1)\)上恆成立,
    \(\therefore f(x)\)\((0,1)\)上單調遞增,
    \(\therefore f(x)<f(1)=2e^2-a<0\)\(\therefore f(x)\)\((0,1)\)上無零點;
    ③當\(0<a<2e^2\)時, \(\because f^{\prime}(x)=4 e^{2 x}+\dfrac{a}{x^2}>0\)\((0,1)\)上恆成立,
    \(\therefore f(x)\)\((0,1)\)上單調遞增.
    \(\because\)\(x\)趨向於\(0\)時,\(f(x)\)趨向於\(-∞\);且\(f(1)=2e^2-a>0\)
    故由零點存在性定理可知:\(f(x)\)\((0,1)\)上存在唯一一個零點,
    綜上:當\(a≤0\)\(a≥2e^2\)時,\(f(x)\)\((0,1)\)上無零點;
    \(0<a<2e^2\)時,\(f(x)\)\((0,1)\)上存在唯一一個零點 .

  3. 答案 (1)\((-1,0)\)
    (2) 當\(a<0\)\(a=\dfrac{1}{2}\)時,\(h(x)\)\(1\)個零點,當\(0<a<\dfrac{1}{2}\)時,\(h(x)\)\(2\)個零點.
    解析 (1)因為\(f(x)=ax\ln ⁡x\),\(a≠0\),要使得\(f(x)<\dfrac{1}{e}\)\((0,+∞)\)上恆成立,
    所以\(a<0\),由\(f'(x)=a(\ln ⁡x+1)\)
    \(f'(x)=a(\ln ⁡x+1)>0\),解得\(0<x<\dfrac{1}{e}\)
    \(f'(x)=a(\ln ⁡x+1)<0\),解得\(x>\dfrac{1}{e}\)
    所以\(f(x)_{\max }=f\left(\dfrac{1}{e}\right)=-\dfrac{a}{e}\)
    所以\(-\dfrac{a}{e}<\dfrac{1}{e}\),所以\(-1<a<0\)
    所以\(a\)的取值範圍為\((-1,0)\)
    (2)①當\(a<0\)時,當\(x\in (0,1)\)時,\(f(x)>0\)\(g(x)<0\)
    所以\(y=f(x)-g(x)\)恆大於零,
    \(x=1\)時,\(y=f(x)-g(x)=0\)
    \(h(x)=f(x)-g(x)\)
    所以\(a<0\)時,令\(h(x)\)\((0,+∞)\)只有\(1\)個零點,
    ②當\(a>0\)時,令\(h(x)=f(x)-g(x)\)
    \(h(x)=a x \ln x-1+\dfrac{2}{x+1}(x>0)\)
    \(h^{\prime}(x)=a(\ln x+1)-\dfrac{2}{(x+1)^2}\)\(h^{\prime \prime}(x)=\dfrac{a}{x}+\dfrac{4}{(x+1)^3}\)
    因為\(x>0\),所以\(h'' (x)>0\)恆成立,
    所以\(h'(x)\)\((0,+∞)\)上單調遞增,
    因為\(h(1)=0\),當\(h'(1)=0\),即\(a=\dfrac{1}{2}\)時,
    \(h'(x)\)\((0,1)\)上恆小於零,在\((1,+∞)\)上恆大於零,
    即 在\((0,1)\)上單調遞減,在\((1,+∞)\)上單調遞增,
    所以\(h(x)⩾h(1)=0\)\(y=h(x)\)\((0,+∞)\)只有\(1\)個零點,
    \(0<a<\dfrac{1}{2}\)時,\(h'(1)=a-\dfrac{1}{2}<0\)
    由於\(h'(x)\)\((0,+∞)\)上單調遞增,
    所以\(h'(x)\)\((0,1]\)上恆小於零,\(h(x)\)\((0,1]\)上單調遞減,
    因為\(h(1)=0\),所以\(h(x)\)\((0,1]\)上有唯一零點\(1\)
    又因為\(h'(1)=a-\dfrac{1}{2}<0\)\(h^{\prime}\left(e^{\dfrac{2}{a}-1}\right)=2-\dfrac{2}{\left(e^{\dfrac{2}{a}-1}+1\right)^2}>0\)
    所以存在 \(x_0 \in\left(1, e^{\dfrac{2}{a}-1}\right)\),使得\(h'(x_0 )=0\)
    由於\(h'(x)\)\((0,+∞)\)上單調遞增, (1) ,
    所以\(h(x)\)\((1,x_0 )\)上單調遞減,在\((x_0,+∞)\)上單調遞增, \(x_0 \in\left(1, e^{\dfrac{2}{a}-1}\right)\)
    所以\(h(x_0 )<h(1)=0\)
    \(0<a<\dfrac{1}{2}\)\(e^{\dfrac{1}{a}}>1\)\(h\left(e^{\dfrac{1}{a}}\right)=e^{\dfrac{1}{a}}-1+\dfrac{2}{e^{\dfrac{1}{a}+1}}>0\)
    所以 \(x_0<e^{\dfrac{1}{a}}\)
    結合\(h(x)\)\((x_0,+∞)\)單調遞增,\(h(x)\)\((1,+∞)\)上有唯一零點,
    \(h(1)=0\)
    所以\(0<a<\dfrac{1}{2}\)時,\(h(x)\)在(0,+∞)上有唯一零點,
    又因為\(h(1)=0\)
    所以\(0<a<\dfrac{1}{2}\)時,\(h(x)\)\((0,+∞)\)上有\(2\)個零點,
    綜上所述,當\(a<0\)\(a=\dfrac{1}{2}\)時,\(h(x)\)\((0,+∞)\)只有\(1\)個零點,
    \(0<a<\dfrac{1}{2}\)時,\(h(x)\)\((0,+∞)\)上有\(2\)個零點.
     

【題型4】幾何法

【典題1】 函式\(g(x)=(x^2+1) e^x-mx-1\)\([-1,+∞)\)有兩個零點,求\(m\)的取值範圍.
解析 函式\(g(x)=(x^2+1) e^x-mx-1\)\([-1,+∞)\)有兩個零點,
等價於\(s(x)=(x^2+1) e^x\)\(t(x)=mx+1\)\([-1,+∞)\)有兩個交點,
\(\because s'(x)=(x+1)^2 e^x≥0\)\(\therefore s(x)\)\([-1,+∞)\)單調遞增,
\(s(-1)=\dfrac{2}{e}\)\(s(0)=1\)
而函式\(t(x)=mx+1\)是過定點\((0,1)\)的直線,且斜率為\(m\)
\(\dfrac{1-\dfrac{2}{e}}{0-(-1)}=1-\dfrac{2}{e} \leq m<1\),或\(m>s'(0)=1\)
故m的取值範圍為 \(1-\dfrac{2}{e} \leqslant m<1\)\(m>1\).

點撥 函式能夠轉化為一次函式與其他形式函式的交點問題,可考慮這種方法;但還要注意到\(s(x)=(x^2+1) e^x\)是凹函式,因為\(s'' (x)>0\),若\(s(x)\)是凸函式,則\(m\)的範圍就不一樣了,但內容超綱不適合處理解答題,第二問利用分離引數法有難度 \(m=\dfrac{\left(x^2+1\right) e^x-1}{x}\),出現洛必達法則、隱零點.
 

【鞏固練習】

1.函式 \(F(x)=\dfrac{a x-a}{e^x}+1(a<0)\)沒有零點,求實數\(a\)的取值範圍.
 
 

參考答案

  1. 答案 \((-e^2,0)\)
    解析 由已知有 \(F(x)=\dfrac{a x-a+e^x}{e^x}=0\)沒有解,即\(e^x=-a(x-1)\)無解,
    \(\therefore y_1=e^x\)\(y_2=-a(x-1)\)兩圖象無交點,
    設兩圖象相切於\((m,n)\)兩點,
    \(\therefore\left\{\begin{array}{l} e^m=-a(m-1) \\ e^m=-a \end{array}\right.\)\(\therefore m=2\)\(a=-e^2\)
    \(\because\)兩圖象無交點,\(\therefore\)\(a\)的取值範圍是\((-e^2,0)\)
     

分層練習

【A組---基礎題】

1.已知函式\(f(x)=ax^3+bx^2+cx\)在點\(x_0\)處取得極小值\(-4\),使其導數\(f'(x)>0\)\(x\)的取值範圍為\((1,3)\)
  (1)求\(f(x)\)解析式;
  (2)若過點\(P(-1,m)\)作曲線\(y=f(x)\)的三條切線,求實數\(m\)的取值範圍.
 
 

2.證明:\(a>1\), \(f(x)=(1+x^2 ) e^x-a\)\((-∞,+∞)\)上有且僅有一個零點.
 
 

3.已知函式 \(f(x)=\dfrac{1}{3} x^3-\dfrac{(k+1)}{2} x^2\)\(g(x)=\dfrac{1}{3}-kx\),且\(f(x)\)在區間\((2,+∞)\)上為增函式.
  (1)求實數\(k\)的取值範圍;
  (2)若函式\(f(x)\)\(g(x)\)的圖象有三個不同的交點,求實數\(k\)的取值範圍.
 
 

4.已知函式\(f(x)=ax^2+x-\ln ⁡x(a\in R)\)
  (1)當\(a=1\)時,求\(f(x)\)在區間 \(\left[\dfrac{1}{3}, 1\right]\)上的最值;
  (2)若\(g(x)=f(x)-x\)在定義域內有兩個零點,求\(a\)的取值範圍.
 
 

5.若 \(f(x)=e^{x-2}-a x\)有兩個零點,求實數\(a\)的取值範圍.
 
 

6.已知函式\(f(x)=x^2-a\ln ⁡x\)
  (1)求\(f(x)\)的單調區間;
  (2)如果\(a>0\),討論函式\(y=f(x)\)在區間\((1,e)\)上零點的個數.
 
 

7.已知函式\(f(x)=x^3+ax+\dfrac{1}{4}\),\(g(x)=-\ln ⁡x\).用\(\min \{m,n\}\)表示\(m\),\(n\)中的最小值,設函式 \(h(x)=\min \{f(x), g(x)\}(x>0)\),討論\(h(x)\)零點的個數 .
 
 

8.若\(f(x) =m^2 x^2-\ln ⁡x\)的圖象與直線\(y=mx\)交於\(M(x_M,y_M )\)\(N(x_N,y_N )\),兩點,且\(x_M>x_N>1\),求實數\(m\)的取值範圍.
 
 

9.已知\(g(x)=a^x+b^x-2(0<a<1,b>1)\)有且只有\(1\)個零點,求\(ab\)的值.
 
 

10.已知\(a>0\),函式\(f(x)=ae^x-x-2\),函式\(g(x)=\ln ⁡(x+2)-x-\ln ⁡a\)
  (1)若對\(∀x\in R\)\(f(x)⩾0\)恆成立,求\(a\)的取值範圍;
  (2)若方程\(f(x)=g(x)\)有兩個根,求\(a\)的取值範圍.
 
 

參考答案

  1. 答案 (1)\(f(x)=-x^3+6x^2-9x\);(2) \((-11,16)\) .
    解析 (1)\(f(x)=-x^3+6x^2-9x\)(過程略).
    (2)設切點\((t,f(t))\)\(y-f(t)=f'(t)(x-t)\)
    \(y=(-3t^2+12t-9)(x-t)+(-t^3+6t^2-9t)\)
    \(=(-3t^2+12t-9)x+t(3t^2-12t+9)-t(t^2-6t+9)\)
    \(=(-3t^2+12t-9)x+t(2t^2-6t)\)\((-1,m)\)
    \(\therefore m=(-3t^2+12t-9)(-1)+2t^3-6t^2\)
    \(\therefore 2t^3-3t^2-12t+9-m=0\)
    \(g(t)=2t^3-3t^2-12t+9-m\)
    \(g'(t)=6t^2-6t-12=6(t^2-t-2)=0\)
    求得\(t=-1\),\(t=2\)
    若要方程\(g(t)=0\)有三個根,
    \(\left\{\begin{array} { l } { g ( - 1 ) > 0 } \\ { g ( 2 ) < 0 } \end{array} \Rightarrow \left\{\begin{array} { l } { - 2 - 3 + 1 2 + 9 - m > 0 } \\ { 1 6 - 1 2 - 2 4 + 9 - m < 0 } \end{array} \Rightarrow \left\{\begin{array}{l} m<16 \\ m>-11 \end{array}\right.\right.\right.\)
    \(-11<m<16\);因此所求實數\(m\)的範圍為:\((-11,16)\).

  2. 證明 \(f'(x)=e^x (x^2+2x+1)=e^x (x+1)^2\)\(\therefore f'(x)≥0\)
    \(\therefore f(x)=(1+x^2 ) e^x-a\)\((-∞,+∞)\)上為增函式.
    \(f(0)=1-a<0\)\(f(\sqrt{a})=(1+a) e^{\sqrt{a}}-a=e^{\sqrt{a}}+a\left(e^{\sqrt{a}}-1\right)>0\)
    \(\therefore f(x)\)\((-∞,+∞)\)上有且只有一個零點.

  3. 答案 (1) \(k≤1\);(2) \(k<1-\sqrt{3}\).
    解析 (1)\(k≤1\)(過程略).
    (2)欲使\(f(x)\)\(g(x)\)的圖象有三個不同的交點,
    即函式\(h(x)=f(x)-g(x)\)有三個不同的零點,
    \(h(x)=f(x)-g(x)=\dfrac{x^3}{3}-\dfrac{(k+1)}{2} x^2+k x-\dfrac{1}{3}\)
    \(h'(x)=x^2-(k+1)x+k=(x-k)(x-1)\)
    \(h'(x)=0\)\(x=k\)\(x=1\)
    由(1)知\(k≤1\)
    ①當\(k=1\)時,\(h'(x)=(x-1)^2≥0\)\(h(x)\)\(R\)上遞增,顯然不合題意.
    ②當\(k<1\)時,\(h(x)\),\(h'(x)\)隨x的變化情況如下表:

\(x\) \((-∞,k)\) \(k\) \((k,1)\) \(1\) \((1,+∞)\)
\(h'(x)\) \(+\) \(0\) \(-\) \(0\) \(+\)
\(h(x)\) \(↗\) 極大值
\(-\dfrac{k^3}{6}+\dfrac{k^2}{2}-\dfrac{1}{3}\) \(↘\) 極小值
\(\dfrac{k-1}{2}\) \(↗\)

由於 \(h(1)=\dfrac{k-1}{2}<0\)且當\(x→+∞\)時,\(y→+∞\),當\(x→-∞\)\(,y→-∞\)
若要函式\(h(x)=f(x)-g(x)\)有三個不同的零點,
故需 \(-\dfrac{k^3}{6}+\dfrac{k^2}{2}-\dfrac{1}{3}>0\),即\((k-1)(k^2-2k-2)<0\)
\(\therefore\left\{\begin{array}{l} k<1 \\ k^2-2 k-2>0 \end{array}\right.\),解得 \(k<1-\sqrt{3}\)
綜上,所求\(k\)的取值範圍為\(k<1-\sqrt{3}\).

  1. 答案 (1)\(f(x)_{min}=\ln ⁡2+\dfrac{3}{4}\)\(f(x)_{max}=2\);(2) \(\left(0, \dfrac{1}{2 e}\right)\).
    解析 (1) \(f(x)_{min}=\ln ⁡2+\dfrac{3}{4}\)\(f(x)_{max}=2\)(過程略)
    (2)令\(g(x)=f(x)-x=0\),得 \(a=\dfrac{\ln x}{x^2}\)
    \(h(x)=\dfrac{\ln x}{x^2}(x>0)\)
    \(\because g(x)=f(x)-x\)在定義域內有兩個零點,
    \(\therefore\)函式\(y=h(x)\)\(y=a\)與在定義域內有兩個交點
    \(\because h^{\prime}(x)=\dfrac{1-2 \ln x}{x^3}\)
    \(h'(x)>0\)得:\(0<x<\sqrt{e}\);令\(h'(x)<0\)得:\(x>\sqrt{e}\)
    \(\therefore h(x)\)\((0,\sqrt{e})\)單調遞增,在\((\sqrt{e},+∞)\)單調遞減,
    \(\because h(\sqrt{e})=\dfrac{1}{2e}\),且當\(x→0\)時,\(h(x)→-∞\),當\(x→+∞\)時,\(h(x)→0\)
    畫出函式\(h(x)\)的大致影象,如圖所示:

    由圖象可得, \(a \in\left(0, \dfrac{1}{2 e}\right)\)
    \(\therefore a\)的取值範圍為 \(\left(0, \dfrac{1}{2 e}\right)\)

  2. 答案 \(\left(\dfrac{1}{e},+\infty\right)\).
    解析 方法1
    因為\(f(x)=e^{x-2}-ax\),所以 \(f^{\prime}(x)=e^{x-2}-a\)
    \(a⩽0\)時,\(f'(x)>0\)\(f(x)\)\(R\)上單調遞增,
    \(f(x)\)至多存在一個零點,不合題意;
    \(a>0\)時,由\(f'(x)=e^{x-2}-a=0\)得:\(x=2+\ln ⁡a\)
    \(x\in (-∞,2+\ln ⁡a)\)時,\(f'(x)<0\)\(f(x)\)\((-∞,2+\ln ⁡a)\)上單調遞減;
    \(x\in (2+\ln ⁡a,+∞)\)時,\(f'(x)>0\)\(f(x)\)\((2+\ln ⁡a,+∞)\)上單調遞增;
    所以當\(x=2+\ln ⁡a\)時,\(f(x)\)取到最小值,且最小值為\(f(2+\ln ⁡a)=-a(1+\ln ⁡a)\)
    ①當\(0<a⩽\dfrac{1}{e}\)時,\(f(2+\ln ⁡a)⩾0\)\(f(x)\)\(R\)上至多存在一個零點,不合題意;
    ②當\(a>\dfrac{1}{e}\)時,\(f(2+\ln ⁡a)<0\)
    由於 \(f(0)=e^{-2}>0\)
    所以\(f(x)\)\((-∞,2+\ln ⁡a)\)上存在唯一零點.
    \(f(4+2 \ln a)=e^{2 \ln a+2}-a(4+2 \ln a)=e^2 a^2-a(4+2 \ln a)=a\left(e^2 a-2 \ln a-4\right)\)
    \(g(a)=e^2 a-2\ln ⁡a-4\)
    \(g^{\prime}(a)=e^2-\dfrac{2}{e}=\dfrac{e^2 a-2}{a}=\dfrac{e^2}{a}\left(a-\dfrac{2}{e^2}\right)\)
    \(a>\dfrac{1}{e}\)時,\(g'(a)>0\)
    所以\(g(a)\)\(\left(\dfrac{1}{e},+\infty\right)\)上單調遞增.
    因為\(g\left(\dfrac{1}{e}\right)=e+2-4>0\)
    所以\(g(a)>g\left(\dfrac{1}{e}\right)>0\),即\(f(4+2\ln ⁡a)>0\)
    從而\(f(x)\)\(R\)上有兩個零點.
    綜上所述,\(a\)的取值範圍為\(\left(\dfrac{1}{e},+\infty\right)\)
    方法2 幾何法
    函式\(f(x)=e^{x-2}-ax\)有兩個零點等價於函式\(g(x)=e^{x-2}\)與函式\(y=ax\)有兩個交點,
    設函式\(y=kx\)與函式\(g(x)=e^{x-2}\)相切,切點\(P(x_0,y_0)\)
    \(\because g'(x)=e^{x-2}\)\(\therefore k=g'(x_0 )=e^{x_0-2}\)
    即切線方程為\(y=e^{x_0-2} x\),則\(y_0=e^{x_0-2} x_0\)
    \(g(x_0 )=e^{x_0-2}\),即\(y_0=e^{x_0-2}\)\(\therefore x_0=1\)
    \(\therefore k=e^{x_0-2}=\dfrac{1}{e}\)
    \(\therefore\)若函式\(g(x)=e^{x-2}\)與函式\(y=ax\)有兩個交點,則\(a>\dfrac{1}{e}\)
    所以\(a\)的取值範圍為 \(\left(\dfrac{1}{e},+\infty\right)\)

  3. 答案 (1)當\(a≤0\)\(f(x)\)\((0,+∞)\)上遞增;
    \(a>0\)\(f(x)\)的增區間為\(\left(\sqrt{\dfrac{a}{2}},+\infty\right)\),減區間為\(\left(0, \sqrt{\dfrac{a}{2}}\right)\)
    (2)當\(0<a<2e\)時,函式\(f(x)\)無零點;
    \(a=2e\)\(a≥e^2\)時,函式\(f(x)\)\(1\)零點;
    \(2e<a<e^2\)時,函式\(f(x)\)\(2\)個零點.
    解析(1)函式\(f(x)=x^2-a\ln ⁡x\)的導數 \(f^{\prime}(x)=2 x-\dfrac{a}{x}=\dfrac{2 x^2-a}{x}(x>0)\)
    \(a≤0\),則\(f'(x)>0\),即有\(f(x)\)\((0,+∞)\)上遞增;
    \(a>0\),由\(f'(x)>0\)得到\(x>\sqrt{\dfrac{a}{2}}\),由\(f'(x)<0\)得到\(0<x<\sqrt{\dfrac{a}{2}}\)
    即有\(a>0\)時,\(f(x)\)的增區間為\(\left(\sqrt{\dfrac{a}{2}},+\infty\right)\),減區間為\(\left(0, \sqrt{\dfrac{a}{2}}\right)\)
    (2)由(1)知\(f(x)\)的極小值為 \(f\left(\sqrt{\dfrac{a}{2}}\right)=\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)\),也為最小值.
    ① 當\(\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)>0\),即\(0<a<2e\),\(f(x)\)的最小值大於\(0\)
    \(y=f(x)\)在區間\((1,e)\)上無零點;
    ② 當\(\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)=0\),即\(a=2e\),即有\(1<\sqrt{\dfrac{a}{2}}<e\),
    \(f(1)=1>0\), \(f\left(\sqrt{\dfrac{a}{2}}\right)=0\)\(f(e)>0\)
    \(f(x)\)\((1,e)\)上有一個零點;
    ③ 當\(\dfrac{a}{2}\left(1-\ln \dfrac{a}{2}\right)<0\),即\(a>2e\),即有\(\sqrt{\dfrac{a}{2}}>\sqrt{e}>1\)
    (i)若\(\sqrt{\dfrac{a}{2}}<e\),即\(2e<a<2e^2\),而\(f(e)=e^2-a\)
    \(2e<a<e^2\)時,\(f(e)≥0\),則\(f(x)\)\((1,e)\)上有\(2\)零點.
    \(e^2≤a<2e^2\)時,\(f(e)≤0\),則\(f(x)\)\((1,e)\)上有\(1\)個零點;
    (ii)若\(\sqrt{\dfrac{a}{2}}≥e\),即\(a≥2e^2\),而\(f(1)>0\)\(f(e)<0\)
    \(f(x)\)\((1,e)\)上有\(1\)零點.
    綜上所述:當\(0<a<2e\)時,函式\(f(x)\)無零點;
    \(a=2e\)\(a≥e^2\)時,函式\(f(x)\)\(1\)零點;
    \(2e<a<e^2\)時,函式\(f(x)\)\(2\)個零點.

  4. 答案\(a>-\dfrac{3}{4}\)\(h(x)\)\(0\)個零點,
    \(a=-\dfrac{3}{4}\)\(a≤-\dfrac{5}{4}\)時,\(h(x)\)有一個零點,
    \(-\dfrac{5}{4}<a<-\dfrac{3}{4}\)時,\(h(x)\)有兩個零點.
    解析\(x\in (1,+∞)\)時,\(g(x)=-\ln ⁡x<0\)
    \(\therefore\) 函式 \(h(x)=\min \{f(x), g(x)\} \leq g(x)<0\)
    \(h(x)\)\((1,+∞)\)時無零點.
    \(x=1\)時,若\(a≥-\dfrac{5}{4}\),則\(f(1)=a+\dfrac{5}{4}≥0\)
    \(\therefore h(x)=\min \{f(1), g(1)\}=g(1)=0\)
    \(x=1\)是函式\(h(x)\)的一個零點;
    \(a<-\dfrac{5}{4}\),則\(f(1)=a+\dfrac{5}{4}<0\)
    \(\therefore h(x)=\min \{f(1), g(1)\}=f(1)<0\)
    \(x=1\)不是函式\(h(x)\)的零點;
    \(x\in (0,1)\)時,\(g(x)=-\ln ⁡x>0\)
    所以只需考慮\(f(x)\)\((0,1)\)的零點個數,
    (i)若\(a≤-3\)\(a≥0\),則\(f'(x)=3x^2+a\)
    \(a≥0\)時,\(f(x)\)\((0,1)\)無零點,
    \(a≤-3\)時,\(f(x)\)\((0,1)\)單調,
    \(f(0)=\dfrac{1}{4}\),\(f(1)=a+\dfrac{5}{4}\)\(f(x)\)\((0,1)\)有一個零點,
    (ii)若\(-3<a<0\)
    \(f(x)\)\(\left(0, \sqrt{-\dfrac{a}{3}}\right)\)單調遞減,在\(\left(\sqrt{-\dfrac{a}{3}}, 1\right)\)單調遞增,
    故當 \(x=\sqrt{-\dfrac{a}{3}}\)時,\(f(x)\)取得最小值,最小值為 \(f\left(\sqrt{-\dfrac{a}{3}}\right)=\dfrac{2 a}{3} \sqrt{-\dfrac{a}{3}}+\dfrac{1}{4}\)
    ①若\(f\left(\sqrt{-\dfrac{a}{3}}\right)>0\),即\(-\dfrac{3}{4}<a<0\)\(f(x)\)\((0,1)\)無零點,
    ②若\(f\left(\sqrt{-\dfrac{a}{3}}\right)=0\),即\(a=-\dfrac{3}{4}\),則\(f(x)\)\((0,1)\)有唯一零點,
    ③若\(f\left(\sqrt{-\dfrac{a}{3}}\right)<0\),即\(-3<a<-\dfrac{3}{4}\),由於\(f(0)=\dfrac{1}{4}\),\(f(1)=a+\dfrac{5}{4}\)
    所以當\(-\dfrac{5}{4}<a<-\dfrac{3}{4}\)時,\(f(x)\)\((0,1)\)有兩個零點,
    \(-3<a≤-\dfrac{5}{4}\)時,\(f(x)\)\((0,1)\)有一個零點,
    綜上所述,當\(a>-\dfrac{3}{4}\)\(h(x)\)\(0\)個零點,
    \(a=-\dfrac{3}{4}\)\(a≤-\dfrac{5}{4}\)時,\(h(x)\)有一個零點,
    \(-\dfrac{5}{4}<a<-\dfrac{3}{4}\)時,\(h(x)\)有兩個零點.

  5. 答案 \(\left(-\dfrac{1}{2 e^{\dfrac{3}{4}}}, 0\right)\)
    解析\(m^2 x^2-\ln ⁡x=mx\)
    則由題意可知\(m^2 x^2-\ln ⁡x-mx=0\)有兩個大於\(1\)的實數根,顯然\(m≠0\).
    \(F(x)=m^2 x^2-\ln ⁡x-mx\)
    \(F^{\prime}(x)=2 m^2 x-\dfrac{1}{x}-m=\dfrac{(2 m x+1)(m x-1)}{x}\).
    \(m>0\),則當 \(x \in\left(0, \dfrac{1}{m}\right)\)時,\(F'(x)<0\)
    \(x \in\left(-\dfrac{1}{2 m}, \quad+\infty\right)\)時,\(F'(x)>0\)
    要滿足已知條件,必有 \(\left\{\begin{array}{c} F(1)=m^2-m>0 \\ F\left(\dfrac{1}{m}\right)=-\ln \dfrac{1}{m}<0 \\ \dfrac{1}{m}>1 \end{array}\right.\)此時無解;
    \(m<0\),則當 \(x \in\left(0,-\dfrac{1}{2 m}\right)\)時,\(F'(x)<0\)
    \(x \in\left(-\dfrac{1}{2 m},+\infty\right)\)時,\(F'(x)>0\)
    要滿足已知條件,必有\(\left\{\begin{array}{c} F(1)=m^2-m>0, \\ F\left(-\dfrac{1}{2 m}\right)=\dfrac{3}{4}+\ln (-2 m)<0 \\ -\dfrac{1}{2 m}>1 \end{array}\right.\),解得\(-\dfrac{1}{2 e^{\dfrac{3}{4}}}<m<0\).
    \(-\dfrac{1}{2 e^{\dfrac{3}{4}}}<m<0\)時,\(F(x)\)\(\left(1,-\dfrac{1}{2 m}\right)\)上單調遞減,\(F(1) \cdot F\left(-\dfrac{1}{2 m}\right)<0\)
    故函式\(F(x)\)\(\left(1,-\dfrac{1}{2 m}\right)\)上有一個零點.
    易知 \(\dfrac{1}{m^2}>-\dfrac{1}{2 m}\),且 \(F\left(\dfrac{1}{m^2}\right)=\dfrac{1}{m^2}-\dfrac{1}{m}-\ln \dfrac{1}{m^2}>\dfrac{1}{m^2}-\ln \dfrac{1}{m^2}\)
    下證:\(x-\ln ⁡x>0\).
    \(g(x)=x-\ln ⁡x\),則\(g'(x)=1-\dfrac{1}{x}\),當\(0<x<1\)\(g'(x)<0\)
    \(x>1\)時,\(g'(x)>0\)
    \(g(x)≥g(1)=1-\ln ⁡1>0\),即\(x-\ln ⁡x>0\)
    \(F\left(\dfrac{1}{m^2}\right)>\dfrac{1}{m^2}-\ln \dfrac{1}{m^2}>0\)
    \(F\left(-\dfrac{1}{2 m}\right) \cdot F\left(\dfrac{1}{m^2}\right)<0\)
    \(F(x)\)\(\left(-\dfrac{1}{2 m},+\infty\right)\)上單調遞增,
    \(F(x)\)\(\left(-\dfrac{1}{2 m},+\infty\right)\)上有一個零點.
    綜上所述,實數\(m\)的取值範圍為 \(\left(-\dfrac{1}{2 e^{\dfrac{3}{4}}}, 0\right)\).

  6. 答案 \(1\)
    解析 \(\because g(0)=0\),由題意知\(0\)\(g(x)=f(x)-2\)的唯一零點,
    因為\(g'(x)=a^x \ln ⁡a+b^x \ln ⁡b\),且\(0<a<1\),\(b>1\)
    \(\ln ⁡a<0\),\(\ln ⁡b>0\)
    所以\(g'(x)=0\)有唯一解 \(x_0=\log _{\dfrac{b}{a}}\left(-\dfrac{\ln a}{\ln b}\right)\)
    \(h(x)=g'(x)\),則\(h'(x)=(a^x \ln ⁡a+b^x \ln ⁡b)'=a^x (\ln ⁡a)^2+b^x (\ln ⁡b)^2\)
    對於任意\(x\in R\),都有\(h'(x)>0\)
    \(g'(x)=h(x)\)\(R\)上單調遞增,
    \(x\in (-∞,x_0 )\)時,\(g'(x)<0\)\(x\in (x_0,+∞)\)時,\(g'(x)>0\)
    故函式\(g(x)\)\((-∞,x_0 )\)時單調遞減,在\((x_0,+∞\))時單調遞增,
    \(g(x)_{min}=g(x_0 )\)
    \(g(x_0 )<0\),當\(x<\log _a⁡2\)時, \(a^x>a^{\log _a^2}=2\)\(b^x>0\)
    \(g(x)>0\),因此當\(x_1<\log _a⁡2\)\(x_1<x_0\)時,\(g(x_1 )>0\)
    此時\(g(x)\)\((x_1,x_0 )\)內有零點,則\(g(x)\)至少有兩個零點,與題意不符;
    \(g(x_0)≥0\),則\(g(x)\)的最小值為\(g(x_0)=0\)
    因為由題意知\(0\)\(g(x)\)的唯一零點,故\(x_0=0\)
    \(x_0=\log \dfrac{b}{a}\left(-\dfrac{\ln a}{\ln b}\right)=0\), \(-\dfrac{\ln a}{\ln b}=1\)
    \(\ln ⁡a+\ln ⁡b=0\)\(\ln ⁡ab=0\)\(ab=1\)
    \(ab\)值為\(1\)

  7. 答案 (1)\([e,+∞)\);(2)\((0,e)\) .
    解析 (1)\([e,+∞)\)(過程略);
    (2)由題意得\(ae^x-x-2-\ln ⁡(x+2)+x+\ln ⁡a=0\)\(x>-2\)上有兩個根,
    \(e^{x+\ln a}+x+\ln a=\ln (x+2)+x+2=e^{\ln (x+2)}+\ln (x+2)\),(同構)
    \(h(x)=x+e^x\),則\(h(x)\)單調遞增,而\(h(x+\ln ⁡a)=h(\ln ⁡(x+2))\)
    所以\(x+\ln ⁡a=\ln ⁡(x+2)\),問題轉化為\(\ln ⁡a=\ln ⁡(x+2)-x\)\(x>-2\)時有\(2\)實根,
    \(t(x)=\ln ⁡(x+2)-x\),則 \(t^{\prime}(x)=-\dfrac{x+1}{x+2}\)
    \(-2<x<-1\)時,\(t'(x)>0\)\(t(x)\)單調遞增,
    \(x<-2\)\(x>-1\)時,\(t'(x)<0\)\(t(x)\)單調遞減,
    所以\(t(x)⩽t(-1)=1\),且在\((-2,-1)\),\((-1,+∞)\)上的值域都為\((-∞,-1]\)
    綜上\(\ln ⁡a<1\),所以\(0<a<e\)
    \(a\)的取值範圍為\((0,e)\)
     

【B組---提高題】

1.己知函式\(f(x)=e^x-1-x+\dfrac{1}{2} ax^2\).
  (1)當\(a≥0\)時,求\(f(x)\)的單調區間和極值;
  (2)討論\(f(x)=e^x-1-x+\dfrac{1}{2} ax^2\)的零點的個數.
 
 

2.已知函式\(f(x)=(x-2)e^x+a(x-1)^2\)有兩個零點,求\(a\)的取值範圍.
 
 

參考答案

  1. 答案 (1)單調遞減區間為\((-∞,0)\),單調遞增區間為\((0,+∞)\);極小值為\(0\),無極大值;
    (2) 當\(a≥0\)\(a=-1\)時,\(f(x)\)\(1\)個零點;
    \(a<0\)\(a≠-1\)時,\(f(x)\)\(2\)個零點.
    解析 (1)\(f(x)=e^x-1-x+\dfrac{1}{2} ax^2\)的定義域為\((-∞,+∞)\)\(f'(x)=e^x-1+ax\)
    \(\because a≥0\)\(\therefore f'' (x)=e^x+a>0\)
    \(f'(x)=e^x-1+ax\)\((-∞,+∞)\)上單調遞增,
    \(f'(0)=0\)
    所以當\(x\in (-∞,0)\)時,\(f'(x)<0\),當\(x\in (0,+∞)\)時,\(f'(x)>0\)
    \(f(x)\)的單調遞減區間為\((-∞,0)\),單調遞增區間為\((0,+∞)\)
    \(f(x)\)的極小值為\(f(0)=0\)\(f(x)\)無極大值;
    (2)當\(a≥0\)時,由(1)知\(f(x)≥f(0)=0\)
    \(f(x)\)僅有一個零點\(x=0\)
    \(a<0\)時,\(f'' (x)=e^x+a\)
    \(f'' (x)=0⇒x=\ln ⁡(-a)\)
    \(f'' (x)>0⇒x>\ln ⁡(-a)\)
    所以\(f'(x)\)\(x\in (\ln ⁡(-a),+∞)\)上單調遞增;
    \(f'' (x)<0⇒x<\ln ⁡(-a)\)
    所以\(f'(x)\)\(x\in (-∞,\ln ⁡(-a))\)上單調遞減,且\(f'(0)=0\)\(f(0)=0\)
    所以\(f'(x)≥f'(\ln ⁡(-a))\)
    最小值\(f'(\ln ⁡(-a))\)\(0\)的比較等價於\(\ln ⁡(-a)\)\(0\)的大小比較,
    所以分三類進行討論:
    ①當\(-1<a<0\)時,即\(\ln ⁡(-a)<0\)時,
    \(f'(x)\)\(x\in (-∞,\ln ⁡(-a))\)上單調遞減及在\(x\in (\ln ⁡(-a),+∞)\)上單調遞增,
    \(f'(0)=0\)\(x→-∞⇒f'(x)→+∞\)
    由零點存在定理,得\(f'(x)\)\(x\in (-∞,\ln ⁡(-a))\)上存在唯一零點,設為\(x_0\),所以
\(x\) \((-∞,x_0 )\) \(x_0\) \((x_0,0)\) \(0\) \((0,+∞)\)
\(f'(x)\) \(+\) \(0\) \(-\) \(0\) \(+\)
\(f(x)\) 遞增 極大值 遞減 極小值 \(f(0)=0\) 遞增

\(f(0)=0\)\(x→-∞⇒f(x)→-∞\)由零點存在定理,
\(f(x)\)\(x\in (-∞,0)\)上存在唯一零點,設為\(x_1\)
綜上,當\(-1<a<0\)時,\(f(x)\)\((-∞,+∞)\)上存在\(2\)個零點(一個為\(x=0\),一個為\(x_1\in (-∞,0)\));
②當\(a=-1\)時,即\(\ln ⁡(-a)=0\)時,
\(f'(x)\)\(x\in (-∞,0)\)上單調遞減及在\(x\in (0,+∞)\)上單調遞增,且\(f'(x)≥f'(0)=0\)
\(f(x)\)\((-∞,+∞)\)上單調遞增,
\(f(x)\)\((-∞,+∞)\)上只有一個零點\(x=0\)
③當\(a<-1\)時,
同理可得\(f(x)\)\((-∞,+∞)\)上存在\(2\)個零點:一個為\(x=0\),一個為\(x_2\in (0,+∞)\)
綜上可得,當\(a≥0\)\(a=-1\)時,\(f(x)\)\(1\)個零點;
\(a<0\)\(a≠-1\)時,\(f(x)\)\(2\)個零點.

  1. 答案 \((0,+∞)\)
    解析 法一 分類討論
    \(\because\)函式\(f(x)=(x-2)e^x+a(x-1)^2\)
    \(\therefore f'(x)=(x-1)e^x+2a(x-1)=(x-1)(e^x+2a)\)
    ①若\(a=0\),那麼\(f(x)=0⇔(x-2)e^x=0⇔x=2\)
    函式\(f(x)\)只有唯一的零點\(2\),不合題意;
    ②若\(a>0\),那麼\(e^x+2a>0\)恆成立,
    \(x<1\)時,\(f'(x)<0\),此時函式為減函式;
    \(x>1\)時,\(f'(x)>0\),此時函式為增函式;
    此時當\(x=1\)時,函式\(f(x)\)取極小值\(-e\)
    \(f(2)=a>0\),可得:函式\(f(x)\)\(x>1\)存在一個零點;
    \(x<1\)時,\(e^x<e\)\(x-2<x-1<0\)
    \(\therefore f(x)=(x-2)e^x+a(x-1)^2>(x-2)e+a(x-1)^2=a(x-1)^2+e(x-1)-e\)
    (使用放縮法)
    方程\(a(x-1)^2+e(x-1)-e=0\)顯然由兩個不相等的實數根,
    設為兩根為\(t_1\),\(t_2\),且\(t_1<1<t_2\)
    則當\(x<t_1\)時, \(f(x)>a(x-1)^2+e(x-1)-e>0\)
    (由\(x→-∞\)時,\(y=x-2→-∞\)\(y=e^x→0\)\(y=a(x-1)^2→+∞\),而二次函式比一次函式的增長速度快,\(f(x)→+∞\)可得函式\(f(x)\)\(x<1\)存在一個零點,以上的證法更嚴謹但難度較大)
    故函式\(f(x)\)\(x<1\)存在一個零點;
    即函式\(f(x)\)\(R\)是存在兩個零點,滿足題意;
    ③若 \(-\dfrac{e}{2}<a<0\),則\(\ln ⁡(-2a)<\ln ⁡e=1\)
    \(x<\ln ⁡(-2a)\)\(x>1\)時,\(f'(x)=(x-1)(e^x+2a)>0\)恆成立,
    \(f(x)\)單調遞增,
    \(\ln ⁡(-2a)<x<1\)時,\(f'(x)=(x-1)(e^x+2a)<0\)恆成立,
    \(f(x)\)單調遞減,
    故當\(x= \ln ⁡(-2a)\)時,函式取極大值,
    \(f(\ln ⁡(-2a))=[\ln ⁡(-2a)-2](-2a)+a[\ln ⁡(-2a)-1]^2=a{[\ln ⁡(-2a)-2]^2+1}<0\)得:函式\(f(x)\)\(R\)上至多存在一個零點,不合題意;
    ④若 \(a=-\dfrac{e}{2}\),則\(\ln ⁡(-2a)=1\),函式\(f(x)\)\(R\)上單調遞增,
    函式\(f(x)\)\(R\)上至多存在一個零點,不合題意;
    ⑤若\(a<-\dfrac{e}{2}\),則\(\ln ⁡(-2a)>\ln ⁡e=1\)
    \(x<1\)\(x>\ln ⁡(-2a)\)時,\(f'(x)=(x-1)(e^x+2a)>0\)恆成立,
    \(f(x)\)單調遞增,
    \(1<x<\ln ⁡(-2a)\)時,\(f'(x)=(x-1)(e^x+2a)<0\)恆成立,
    \(f(x)\)單調遞減,
    故當\(x=1\)時,函式取極大值,
    \(f(1)=-e<0\)得:函式\(f(x)\)\(R\)上至多存在一個零點,不合題意;
    綜上所述,\(a\)的取值範圍為\((0,+∞)\)
    法二 分類引數
    解:顯然\(x=1\)不是函式\(f(x)\)的零點,
    \(x≠1\)時,方程\(f(x)=0\)等價於 \(-a=\dfrac{x-2}{(x-1)^2} \cdot e^x\)
    \(g(x)=\dfrac{x-2}{(x-1)^2} \cdot e^x\),求導 \(g^{\prime}(x)=e^x \cdot \dfrac{x^2-4 x+5}{(x-1)^3}\)
    \(x<1\)時,\(g'(x)<0\);當\(x>1\)時,\(g'(x)>0\)
    \(\therefore\)函式\(g(x)\)\((-∞,1)\)上單調遞減,在\((1,+∞)\)上單調遞增,
    \(x→-∞\)時,\(g(x)→0\)\(x→1\)時,\(g(x)→-∞\)\(x→+∞\)時,\(g(x)→+∞\)
    \(\therefore\)函式\(g(x)\)\((-∞,1)\)上的值域為\((-∞,0)\),在\((1,+∞)\)上的值域為\((-∞,+∞)\)
    \(\therefore\)\(-a<0\)時,函式\(f(x)\)有兩個零點,
    故所求\(a\)取值範圍為\((0,+∞)\)
     

【C組---拓展題】

1.已知函式\(f(x)=\ln ⁡x\)
  (1)若\(af(x)⩽e^{x-1}-1\)恆成立,求實數\(a\)的值;
  (2)若關於\(x\)的方程\(f\left(x^2\right)-x+\dfrac{m}{x}-\ln m=0\)有四個不同的實數根,則實數\(m\)的取值範圍.
 
 

2.已知函式\(f(x)=\ln ⁡x-a^2 x^2+ax\)
  (1)求函式\(f(x)\)在定義域內的最值.
  (2)當\(a>0\)時,若\(y=f'(x)\)有兩個不同的零點\(x_1\),\(x_2\),求證:\(a(x_1+x_2 )>2\)
 
 

參考答案

  1. 答案 (1) \(a=1\);(2) \((0,1)\) .
    解析 (1)\(a=1\).(過程略)
    (2)解法一:由題意知,\(m>0\)\(h(x)=\ln x^2-x+\dfrac{m}{x}-\ln m\)
    \(h^{\prime}(x)=\dfrac{2}{x}-1-\dfrac{m}{x^2}=\dfrac{-x^2+2 x-m}{x^2}\)
    \(x<0\)時,\(h'(x)<0\)\(h(x)\)在區間\((-∞,0)\)單調遞減,
    \(h(-\sqrt{m})=0\),故\(h(x)\)在區間\((-∞,0)\)有唯一實根,
    \(m⩾1\)\(-x^2+2x-m=-(x-1)^2+1-m⩽0\)
    \(x>0\)時,\(h'(x)≤0\)\(h(x)\)在區間\((0,+∞)\)單調遞減,
    \(h(x)\)在區間\((0,+∞)\)至多有一個實根,不符合題意,
    \(0<m<1\),令\(x_1,x_2 (x_1<x_2 )\)是方程\(-x^2+2x-m=0\)的兩不同實根,
    易得\(0<x_1<1<x_2\)
    \(h(x)\)在區間\((0,x_1 )\),\((x_2,+∞)\)上單調遞減,在區間\((x_1,x_2 )\)上單調遞增.
    \(h\left(x_1\right)=\ln x_1^2-x_1+\dfrac{m}{x_1}-\ln m=\ln x_1^2-x_1+\dfrac{-x_1^2+2 x_1}{x_1}-\ln \left(-x_1^2+2 x_1\right)\)
    \(=-2x_1+2+\ln ⁡x_1-\ln ⁡(2-x_1 )\)
    \(φ(x)=-2x+2+\ln ⁡x-\ln ⁡(2-x)(0<x<1)\)
    \(\varphi^{\prime}(x)=-2+\dfrac{1}{x}+\dfrac{1}{2-x}=\dfrac{2(x-1)^2}{x(2-x)}>0\)
    \(φ(x)<φ(1)=0\)\(h(x_1 )<0\)
    同理可證\(h(x_2 )>0\)
    \(x_3=\left(1+\sqrt{2+\dfrac{1}{m}}\right)^2>x_2=1+\sqrt{1-m}\)\(h\left(x_3\right)<2 \sqrt{x_3}-x_3+1+\dfrac{1}{m}=0\)
    \(x_4=\min \left\{\ln \dfrac{1}{m}, \dfrac{m^2}{4}\right\}\)\(x_4 \leqslant \dfrac{m^2}{4}<\dfrac{m}{2}<x_1=1-\sqrt{1-m}\)
    \(h\left(x_4\right)>2 \sqrt{x_4}-\dfrac{2}{\sqrt{x_4}}+\dfrac{m}{x_4}+\left(\ln \dfrac{1}{m}-x_4\right)=2 \sqrt{x_4}+\dfrac{m-2 \sqrt{x_4}}{x_4}+\left(\ln \dfrac{1}{m}-x_4\right)>0\)
    \(h(x)\)\((x_4,x_1 )\),\((x_1,x_2 )\),\((x_2,x_3 )\)各存在一個零點,
    實數\(m\)的取值範圍是\((0,1)\)
    解法二:由題意知,\(m>0\)\(h(x)=\ln x^2-x+\dfrac{m}{x}-\ln m\)
    \(h^{\prime}(x)=\dfrac{2}{x}-1-\dfrac{m}{x^2}=\dfrac{-x^2+2 x-m}{x^2}\)
    \(x<0\)時,\(h'(x)<0\)\(h(x)\)在區間\((-∞,0)\)單調遞減,
    \(h(-\sqrt{m})=0\),故\(h(x)\)在區間\((-∞,0)\)有唯一實根,
    因此當\(x>0\)時,\(\ln x-x=\ln \dfrac{m}{x}-\dfrac{m}{x}\)有三個實根,
    \(x=\dfrac{m}{x}\), \(x=\sqrt{m}\)是方程的一個實根,
    \(x \neq \dfrac{m}{x}\)\(\ln x-\ln \dfrac{m}{x}=x-\dfrac{m}{x}\)\(\dfrac{1}{\sqrt{m}}>\dfrac{\ln x-\ln \dfrac{m}{x}}{x \dfrac{m}{x}}=1\)(對數均值不等式),
    所以\(0<m<1\)
    \(m\)的取值範圍為\((0,1)\)

  2. 答案 (1) 最大值\(-\ln ⁡a\),無最小值;(2)略 .
    解析 (1)函式\(f(x)=\ln ⁡x-a^2 x^2+ax\)的定義域為\((0,+∞)\)
    \(f^{\prime}(x)=\dfrac{1}{x}-2 a^2 x+a=-\dfrac{(2 a x+1)(a x-1)}{x}\)
    \(a=0\)時,\(f(x)=\ln ⁡x\)
    此時函式\(f(x)\)為增函式,無最值,
    \(a≠0\)時,令\(f'(x)=0\),得\(x=-\dfrac{1}{2a}\)\(x=\dfrac{1}{a}\)
    ①若\(a<0\),則\(-\dfrac{1}{2a}>0\)\(\dfrac{1}{a} <0\)
    \(f'(x)>0\),得\(0<x<-\dfrac{1}{2a}\)\(f(x)\)單調遞增,
    \(f'(x)<0\),得\(x>-\dfrac{1}{2a}\)\(f(x)\)單調遞減,
    所以函式\(f(x)\)在定義域內有最大值\(f\left(-\dfrac{1}{2 a}\right)=\ln \left(-\dfrac{1}{2 a}\right)-a^2\left(-\dfrac{1}{2 a}\right)^2+a\left(\dfrac{1}{a}\right)=\ln \left(-\dfrac{1}{2 a}\right)-\dfrac{3}{4}\),無最小值.
    ②若\(a>0\),則\(-\dfrac{1}{2a}<0\)\(\dfrac{1}{a} >0\)
    \(f'(x)>0\),得\(0<x<\dfrac{1}{a}\)\(f(x)\)單調遞增,
    \(f'(x)<0\),得\(x>\dfrac{1}{a}\)\(f(x)\)單調遞減,
    所以\(f(x)\)定義域內有最大值\(f\left(\dfrac{1}{a}\right)=\ln \left(\dfrac{1}{a}\right)-a^2\left(\dfrac{1}{a}\right)^2+a\left(-\dfrac{1}{2 a}\right)=-\ln a\),無最小值.
    (2)證明:由(1)知,當\(a>0\)時,函式\(f(x)\)在定義域內的最大值為\(f\left(\dfrac{1}{a}\right)=-\ln a\)
    因為\(y=f(x)\)有兩個不同的零點\(x_1\),\(x_2\)
    所以\(-\ln ⁡a>0\),解得\(-\ln ⁡a>0\), 解得\(0<a<1\)
    不妨設\(0<x_1<\dfrac{1}{a} <x_2\)
    由題意知\(f(x_1 )=\ln ⁡x_1-a^2 x_1^2+ax_1=0\)\(f(x_2 )=\ln ⁡x_2-a^2 x_2^2+ax_2=0\)
    所以\(\ln ⁡x_2-\ln ⁡x_1=a^2 (x_2^2-x_1^2 )-ax_2+ax_1\)
    \(\ln \dfrac{\ln x_2-\ln x_1}{x_2-x_1}=a\left[a\left(x_2+x_1\right)-1\right]\)
    \(\dfrac{\ln \dfrac{x_2}{x_1}}{\dfrac{x_2}{x_1}-1}=a\left[a\left(x_1+x_2\right)-1\right] x_1\)
    \(h(t)=\ln t-\dfrac{2(t-1)}{t+1}(t>1)\)
    \(h^{\prime}(t)=\dfrac{1}{t}-\dfrac{4}{(t+1)^2}=\dfrac{(t-1)^2}{t(t+1)^2}(t>1)\)
    所以當\(t>1\)時,\(h'(t)>0\)\(h(t)\)單調遞增,
    所以\(h(t)>h(1)=0\)
    \(\ln t-\dfrac{2(t-1)}{t+1}>0\),所以 \(\dfrac{\ln t}{t-1}>\dfrac{2}{t+1}\)
    \(t=\dfrac{x_2}{x_1}\)
    則上式可化為 \(\dfrac{\ln \dfrac{x_2}{x_1}}{\dfrac{x_2}{x_1}-1}>\dfrac{2}{\dfrac{x_2}{x_1}+1}\)
    所以 \(a\left[a\left(x_1+x_2\right)-1\right] x_1>\dfrac{2}{\dfrac{x_2}{x_1}+1}\)
    所以 \(a\left[a\left(x_1+x_2\right)-1\right] x_1>\dfrac{2}{x_1+x_2}\)
    \(a^2 (x_1+x_2 )^2-a(x_1+x_2 )-2>0\)
    所以\([a(x_1+x_2 )-2][a(x_1+x_2 )+1]>0\)
    又因為\(a(x_1+x_2 )+1>0\)恆成立,
    所以\(a(x_1+x_2 )>2\)