1. 程式人生 > >HDU 3652 B-number

HDU 3652 B-number

and calculate data- col mono cstring onos pro line



B-number

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)



Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.



Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).



Output
Print each answer in a single line.



Sample Input
13
100
200
1000



Sample Output
1
1
2
2



總算用記憶化搜索搞定了一個難一點的數位dp了!。


AC代碼例如以下:

///記憶化搜素  500MS 272K

#include<iostream>
#include<cstdio>
#include<cstring>
#define mod 13
using namespace std;

int dp[20][15][4];
int num[20];

int dfs(int pos,int mo,int status,bool limit)
{
    int i;
    //cout<<pos<<"~~~~~~~"<<mo<<"~~~~~"<<status<<"~~~~~~~~"<<limit<<"~~~~~~~"<<dp[pos][status]<<endl;
    if(!pos)
        return status==2&&mo==0;
    if(!limit&&dp[pos][mo][status]!=0) return dp[pos][mo][status];
    int end = limit ?

num[pos] : 9; int sum=0; for(i=0;i<=end;i++) { int a=mo; int flag = status ; if(flag==0&&i==1) flag=1; if(flag==1&&i==3) flag=2; if(flag==1&&i!=1&&i!=3) flag=0; sum+=dfs(pos-1,(a*10+i)%mod,flag,limit&&i==end); } //cout<<"!!!!!!!!!!!"<<sum<<"!!!!!!!!"<<endl; return limit ?

sum : dp[pos][mo][status] = sum; } int _13(int n) { int pos=1; memset(dp,0,sizeof dp); while (n>0) { num[pos++]=n%10; n/=10; } //cout<<"~~~~~~~~~"<<pos-1<<"~~~~~~~~"<<endl; return dfs(pos-1,0,0,true); } int main() { int i,j; int n; while(~scanf("%d",&n)) { printf("%d\n",_13(n)); } return 0; }






HDU 3652 B-number