3652 B-number 數位DP(記憶化搜尋)
阿新 • • 發佈:2018-12-21
B-number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 9200 Accepted Submission(s): 5481
Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).
Output
Print each answer in a single line.
Sample Input
13 100 200 1000
Sample Output
1 1 2 2
題意:找出1到n中即含13而且能整除13的數字的個數。
#include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<queue> #include<vector> #include<stack> #include<map> #include<set> #include<cmath> #include<cctype> #include<ctime> #define INF 0x3f3f3f3f #define PI acos(-1.0) typedef long long ll; typedef unsigned long long ull; using namespace std; int a[25]; ll dp[25][25][3]; ll dfs(int len,int modd,int cnt,bool limit) { if(len==-1) return (cnt==2)&&(modd==0); if(!limit&&dp[len][modd][cnt]!=-1) return dp[len][modd][cnt]; ll ans=0; int up=limit?a[len]:9; for(int i=0;i<=up;i++) { int mod=(modd*10+i)%13; int ccnt=cnt; if(cnt==0&&i==1) ccnt=1; else if(cnt==1&&i==3) ccnt=2; else if(cnt==1&&i!=1) ccnt=0; ans+=dfs(len-1,mod,ccnt,i==a[len]&&limit); } if(!limit) dp[len][modd][cnt]=ans; return ans; } ll fun(int x) { int len=0; while(x) { a[len++]=x%10; x/=10; } return dfs(len-1,0,0,1); } int main() { int n; while(cin>>n) { memset(dp,-1,sizeof(dp)); cout<<fun(n)<<endl; } return 0; }