1394-Minimum Inversion Number
阿新 • • 發佈:2017-06-20
logs cas ret ++ ins tom 大於 sam print
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Output
For each case, output the minimum inversion number on a
single line.
一個排列中逆序的總數就稱為這個排列的逆序數。
思路:先暴力求出開始時的逆序數,然後會有一個性質:每次把末尾的數掉到序列前面時,減少的逆序對數為n-1-a[i] ,增加的逆序對數為a[i] ,所以求出其他情況時的逆序數。
Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20162 Accepted Submission(s):
12110
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Sample Input 10 1 3 6 9 0 8 5 7 4 2
Sample Output 16
Author CHEN, Gaoli 逆序數的概念:在一個排列中,如果一對數的前後位置與大小順序相反,即前面的數大於後面的數,那末它們就稱為一個逆序。
一個排列中逆序的總數就稱為這個排列的逆序數。
思路:先暴力求出開始時的逆序數,然後會有一個性質:每次把末尾的數掉到序列前面時,減少的逆序對數為n-1-a[i] ,增加的逆序對數為a[i] ,所以求出其他情況時的逆序數。
1 #include<cstdio> 2 3 int t[5010]; 4 int n,ans,sum; 5 int main() 6 { 7 while (scanf("%d",&n)!=EOF) 8 { 9 sum = 0; 10 for (int i=1; i<=n; ++i) 11 scanf("%d",&t[i]); 12 for (int i=1; i<n; ++i) 13 for (int j=i+1; j<=n; ++j) 14 if (t[i]>t[j]) sum++; 15 ans = sum; 16 for (int i=n; i>=1; --i) 17 { 18 sum -= n-1-t[i]; 19 sum += t[i]; 20 if (sum < ans) ans = sum; 21 } 22 printf("%d\n",ans); 23 } 24 return 0; 25 }
1394-Minimum Inversion Number