hdu1394 Minimum Inversion Number
Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3796 Accepted Submission(s): 2309
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
動動腦子,題目說是一個環
那麼每轉一次,就相當於把第一個數放到最後面
考慮第一個數對原有答案的貢獻是a[1]-1,也就是小於它的個數(資料是1到n的排列)
最後一個數對原答案的貢獻相反
那麼移動後當前逆序對數就要減去比第一個數小的個數,再加上比它大的數的個數
這樣我們求出一次移動後的逆序對數
這時候我們發現下一次移動直接修改答案就好,不需要改動樹狀陣列
推出式子ans+=n-a[i]-(a[i]-1)
code:
#include<stdio.h> #include<stdlib.h> #include<string.h> #define LL long long int bit[5050]={0},n,a[5050]; inline LL min(LL a,LL b){ return a<b?a:b; } inline int lb(int x){ return x&(-x); } inline LL q(int x){ LL ans=0; while(x){ ans+=bit[x]; x-=lb(x); } return ans; } inline int c(int x){ while(x<=n){ bit[x]++; x+=lb(x); } return 0; } int main(){ while(scanf("%d",&n)!=EOF){ memset(bit,0,sizeof(bit)); LL ans=0; for(int i=1;i<=n;i++){ scanf("%d",&a[i]); a[i]++; ans+=q(n)-q(a[i]); c(a[i]); } LL mn=ans; mn=min(mn,ans); for(int i=1;i<=n;i++){ ans+=n-a[i]-(a[i]-1); mn=min(mn,ans); } printf("%lld\n",mn); } return 0; }