POJ 1426 Find The Multiple(數論——中國同余定理)
阿新 • • 發佈:2017-08-21
定義 十進制 pro desc decimal tput one return solution
The input file may contain multiple test cases. Each line contains a value of n (1 <= n <= 200). A line containing a zero terminates the input.
題目鏈接:
http://poj.org/problem?id=1426
Description
Given a positive integer n, write a program to find out a nonzero multiple m of n whose decimal representation contains only the digits 0 and 1. You may assume that n is not greater than 200 and there is a corresponding m containing no more than 100 decimal digits.Input
Output
For each value of n in the input print a line containing the corresponding value of m. The decimal representation of m must not contain more than 100 digits. If there are multiple solutions for a given value of n, any one of them is acceptable.Sample Input
2 6 19 0
Sample Output
10 100100100100100100 111111111111111111
題意描述:
輸入n (1 <= n <= 200)
輸出一個由0和1組成的數並且能夠被n整除
解題思路:
看了題解有了一些思路,用mod[i]=mod[i/2]*10+i%2;這個式子計算二進制i在十進制的形式並存進mod[i]數組,所以使用long long 定義mod數組,很容易理解
1 #include<stdio.h> 2 long long mod[600001]; 3 int main() 4 { 5 int n; 6 while(scanf("%d",&n),n) 7 { 8 int i; 9 for(i=1; mod[i-1]%n != 0;i++) 10 mod[i]=mod[i/2]*10+i%2;// mod[i]表示十進制形式的二進制i 11 printf("%I64d\n",mod[i]); 12 } 13 return 0; 14 }
但是延伸一下,如果超過200或者更大呢,請參考
#include<stdio.h> #define N 600000 int mod[N]; int ans[200];//根據情況增大數組 int main() { int i,k,n,j; while(scanf("%d",&n),n) { mod[1]=1%n; for(i=2;mod[i-1]!=0;i++) mod[i]=(mod[i/2]*10+i%2) %n; //printf("i-1=%d\n",i-1); i--; k=0; while(i) { ans[k++]=i%2; i/=2; } for(i=k-1;i>=0;i--) printf("%d",ans[i]); puts("\n"); } return 0; }
POJ 1426 Find The Multiple(數論——中國同余定理)